

An International Journal of Research in AYUSH and Allied Systems

Research Article

THE ROLE OF *MATRA BASTI* AND *KATI BASTI* IN *KATISHOOL* WITH SPECIAL REFERENCE TO LUMBAR SPONDYLOSIS

Kalpana Gholap^{1*}, U.S.Nigam²

^{*1}Associate Professor, ²Professor & HOD., Dept. of Panchkarma, Y.M.T Ayurvedic Medical College, Kharghar, Navi Mumbai, Maharashtra, India.

KEYWORDS: Matra Basti, Kati	ABSTRACT
<i>Basti, Katishool,</i> Lumbar Spondylosis.	The degenerative change in the disc and lumbar spine is known as Lumbar Spondylosis. <i>Katishula</i> is localized <i>Vata vyadhi</i> in which <i>Prakupita vayu</i> affects <i>Sandhi</i> . According to <i>Anshansha Kalpana</i> of <i>Katishula</i> , the <i>Vata</i> vitiated due to <i>Ruksha</i> and <i>Shita guna</i> , which lead to <i>Dhatukshaya</i> . <i>Katishula</i> , according to its sign and symptoms can be compared to Lumbar spondylosis in modern medical science and numbers of Ayurvedic authors also recently have combined <i>Katishula</i> as lumbar spondylosis. Hence, the disease lumbar spondylosis.
	Thus, to treat the <i>Vyadhi</i> opposing treatment should be done and it should be <i>Snehana, Svedana</i> and <i>Basti</i> . Out of <i>Panchakarmas, Basti Chikitsa</i> is most important as it radically pacifies the morbid <i>Vata</i> , the sole <i>Dosha</i> , responsible for the movements of all <i>Dosha</i> , <i>Dhatu</i> and <i>Mala</i> within the body. It is called as half treatment of <i>Chikitsa</i> which is also called as " <i>Ardha Chikitsa</i> ". The <i>Matra Basti</i> is one of the types of <i>Anuvasana Basti</i> which can be administered to any individual any time. <i>Matrabasti</i> is such a <i>Chikitsa</i> that is applicable in all the <i>Vatavyadhi</i> . <i>Kati basti</i> is one of the dual <i>Panchakarma</i> therapies which have the action of
*Address for correspondence Dr Kalpana Gholap Associate Professor, Dept. of Panchkarma, Y.M.T Ayurvedic Medical College, Kharghar, Navi Mumbai, Maharashtra, India. Email: kalpu.gholap@gmail.com Contact: 09833971482	both <i>Snehan</i> and <i>Swedan</i> for <i>Asthisandhigata vata</i> . The symptoms like <i>Katishul,</i> <i>Pidanasahatva, Katigraha, Akunchan Prasaranayoh Shula,</i> Difficulty in forward bending, <i>Anidra</i> were graded from 0 to 4 for assessment. X-ray that determines spondylosis, osteoporosis and spinal degenerative conditions were considered. So for this study <i>Prasarni Giloy tail</i> was used for <i>Kati basti</i> (35mins) along with <i>matra basti</i> (60ml) in Group A and other group B was treated only with <i>Matra basti</i> (60ml). In this study, <i>Basti</i> is given for 9 days. <i>Prasarni giloy Matra Basti &</i> <i>Katibasti</i> i.e., Group A is found to be very much symptomatically effective in patients suffering from <i>Katishula</i> . Overall percentage of relief was more in Group A (72.33%) than Group B (64.33%).

INTRODUCTION

According to Ayurvedic philosophy, the body is formed of three functional units: *Dosha, Dhatu* and *Mala*. Disharmony in the *Dosha-Dhatu-Mala* is attributed to be the root cause of disease by Ayurveda. Hence different remedies are aimed at re-achieving a state of equilibrium. The remedies mainly include *Shodhana Chikitsa* and *Shamana Chikitsa*. '*Shodhana*' describes methods to purify the body, which is a prime prerequisite for most other therapies and includes *Panchakarma* Therapy¹.

According to Ayurveda *Katishool* effects *Madhyamrogmarg* as it involves *Marma, Asthi & Sandhi*. The predominance pathological factor for this disease is Vata. In Charaka *Sandhigat vata* is mentioned in *Vatavyadhi chikitsa Adhyaya* but extensively described in *Madhav nidan*. First of all Sushrut had established the therapeutic measures of this disease, as *Sneha, Upnah, Agnikarma, Bandhan & Mardan²*.

The *Sneha* through *Matra Basti & Kati basti* have an important role in their own capacity in the Ayurvedic approach to deal with condition of degenerative problem like backache or osteoarthritis¹¹.

Dhatu are the basic structural units responsible for the proper growth and development of human beings. *Dhatusaithilya* means disintegration of *Dhatu* is mostly caused by its own malfunctioning or due to ageing factor. This process of structural disintegration later on develops into a condition of Osteoarthritis. They need to be properly nourished for maintaining structural and factional integrity of the joint as well as body also. *Snehan* therapy results in delaying the ageing process and the process of degeneration will be slowed down¹.

Lumbar spondylosis is defined as degenerative changes occurring in the discs and lumbar spine. Nuki G. et al (1999) adds that disc degeneration is age related and it starts in the third decade¹⁰. The treatment of low

backache due to lumbar spondylosis, according to modern medicine moves around calcium supplementation, anti-inflammatory, analgesic drugs or sometime surgical intervention may also be needed in many patients as per the condition Amidst this background, the tired eyes are looking towards Ayurveda with great hope of getting relieved from the deadly agonizing pain. The established frame of Ayurveda in reliving chronic diseases make the people expert by complete or moderate relief from the long standing backache.

Taking foresaid facts into mind; study was planned to evaluate role of *Matra Basti & Kati Basti* in the management of *Katishool* with special reference to lumbar spondylosis.

AIMS AND OBJECTIVES

This study is particularly pinpointed on following:

- 1. To study *Katishula* vis-a-vis Lumbar Spondylosis from Ayurveda and modern point of view respectively.
- 2. To study the efficacy of *Matra Basti & Kati Basti in Katishula* with special reference to Lumbar Spondylosis.

DRUG REVIEW

Guduchi(Tinospora cordifolia)⁸

- 1.Ras-Katu,Tikta
- 2.Vipak-Madhur
- 3.Virya-Ushna

4.Doshaghnata-Tridoshhar

5.Rog-adhikar-Sangrahani, Balya, Jwarhar, Agni deepan, Vatahar

Prasarni⁸

- 1.Ras- Tikta
- 2.Vipak-Madhur
- 3.Guna-Guru,Vrushya
- 4.Doshaghnata-Vata,Rakta,Kaphahar 5.Karma-Bal Sandhankar

MATERIALS AND METHODS

Type of study: Open randomized study.

Group Management

i) Group A: - termed as Trial group

a) No. of patients: 20 patients.

b) Treatment: This group was treated with *Prasarni Giloy Matra Basti & Kati basti*

ii) Group B: termed as Control group

a) No of patients : 20 patients.

b) Treatment: This group was treated with *Prasarni Taila Matra Basti*.

Procedure: Pre-procedure-*Sthanik Abhyanga & Sthanik Svedana* Over lower abdomen, groin.

Procedure: *Matra Basti* was administered through the rectum in left lateral Position after food with the help of *Bastiyantra*.

Procedure of *Katibasti*: Black gram powder is turned to dough with the help of water. The patient is advised to lie

AYUSHDHARA | July - August 2016 | Vol 3 | Issue 4

down in prone position. A trough is made with this dough on lumbar region and *Prasarni-Giloy tail* is filled in it for 35 minutes followed by *Nadi-sweda* in each patients.¹¹

Prasarni-Giloy Tail: We have adopted the methodology for *Tail pak* laid by Acharya Sharangdhar and process it till Madhyampak⁸.

- 1. Til Tail-4 part
- 2. *Prasarni* Giloy Kalka-1 part

3. Prasarni Giloy Quath-16 Part

Matra of Basti¹: 60 ml

Duration of treatment : 9 days

Follow Up: Daily follow up of patient was checked during the course of treatment and after 15 days completion of treatment follow up was considered.

Diet: Patients regular diet, No restriction on diet.

Inclusion Criteria

a) Age : between 35-60 years

b) Sex: Both genders were included.

c) X-ray: determined spondylosis, osteoporosis and spinal degenerative conditions

Exclusion Criteria

a) Age: below 35 years and above 60 years

b) Patient having structural deformity likes lordosis or any spinal curvature.

c) Patient having past history of rheumatoid or rheumatic arthritis, pot's spine etc.

d) Patient suffering from any systemic diseases likes hypertension, diabetes mellitus, asthma, etc.

e) Patient having other pathology like pelvic inflammatory diseases, anemia, general debility etc.

f) Patient where steroids dependent.

Criteria of diagnosis:

i) Patients having symptoms

a) Katishula b) Pidanasahatva c) Katigraha d) Akunchan Prasaranayoh Shula e) Difficulty in forward bending f) Anidra

ii) Investigation

- a) Complete Blood Count, Erythrocyte Sedimentation Rate, Lipid Profile, Serum Calcium
- b) Serum Alkaline Phosphatase
- c) X-ray of Lumbar sacral spine Anteroposterior /Lateral view
- d) MRI-Lumbosacral spine

iii) Test for Diagnosis¹⁰

- a) Straight leg rising test
- b) Femoral nerve stretch test
- c) Lassegue's sign
- d) Pump-handle test
- e) Gaenslen's test

Criteria of Assessment:

a) *Katishula* (Low Back Pain)

- 0- No Pain
- 1- Mild Pain

Kalpana gholap, U.S.Nigam. The Role of Matra Basti and Kati Basti in Katishool with Special Reference to Lumbar Spondylosis

2- Moderate Pain but no difficulty in walking 1 - Patient savs tenderness 3- Slight difficulty in walking due to pain 2 - Wincing of face 4- Much difficulty in walking 3 - Wincing of face and withdraws the hand 5- Much pain which prevents walking 4 - Not allowing to touch the joint b) Akunchan Prasaranayoh Shula (Pain on extension e) Anidra and flexion) 0 - Samvak Nidra 0 - No Pain. 1 - Mild Anidra 1 - Pain without wincing of face. 2 - Moderate Anidra 2 - Pain with wincing of face. 3 - Severe Anidra 3 - Shouts or prevents complete flexion/extension. f) Angle of flexion of lumbar vertebrae 4 - Does not allow passive movement. h) Angle of extension of lumbar vertebrae i) Distance between ground and middle finger of patient c) Shulasya Kala (Duration of Pain) in fully flexed possible position.

Total Effect of Therapy

- a) Completely relieved More than 75% relief
- b) Markedly improved Relief within a range of 50-75%.
- c) Improve Relief within a range of 25-50%.
- d) Unchanged No relief or minimum relief of 25%.

Name of study Centre: OPD and IPD patients from Y.M.T Ayurvedic Hospital, Kharghar.

d) Pidanasahatva (Tenderness) 0 – No tenderness

0 - No pain

to11pm)

t11pm)

Observation and Result

3 - Pain present whole day

1 - Only in morning (4am to10am) or evening (5pm

2 - Pain in morning and evening (4am t10am and 5pm

Table 1: Demographic Data

	Table 1. Demographic Data											
Age	Range in years 35-60	Trial group	Control group									
Sex	Male	6(30%)	8(40%)									
	Female	14(70%)	12(605)									
Religion	Hindu 🛛 🙀 🛜	19(95%)	18(90%)									
-	Muslim	1(5%)	2(10%)									
Nature of work	Sedentary	6(30%)	8(40%)									
	Standing Sitting	3(15%)	3(15%)									
	Sitting	4(20%)	2(10%)									
	Labour	7(35%)	7(35%)									
Diet	Vegetarian	6(30%)	8(40%)									
	Mix	14(70%)	12(60%)									
Marital status	Married	18(90%)	00									
	Unmarried	2(10%)	20(100%)									
Economical status	Low income	2(10%)	1(5%)									
	Middle income	18(90%)	18(90%)									
	Highly income	00	1(5%)									
Weight status	Normal weight	7(35%)	8(40%)									
	Over weight	10(50%)	9(45%)									
	Under weight	3(15%)	3(15%)									
Dosha-prakruti	Vata-Pittaja	9(45%)	10(50%)									
	Pitta-Kaphaja	3(15%)	4(20%)									
	Kapha-Vataja	8(40%)	6(30%)									

Table 2: Showing Incidence of main Vyadhi Ghataka involved 40 patients of Katishula

Sr. No.	Vyadhi Ghatak involved	Group A		Group B		Total No. Patients	Doncontago
51°. NO.		No. of pts.	%	No. of pts	%	Total No. Patients	Percentage
	A) Dosha-Involved						
1)	Vata-Dominance	20	100	20	100	40	100
2)	<i>Pitta</i> -Dominance	12	60	09	45	21	52.5
3)	Kapha-Dominance	04	20	05	25	09	22.5
	B) Dhatu-Involved						
1)	Rasa Dhatu	06	30	05	15	11	27.5
2)	Rakta Dhatu	11	55	13	65	24	60
3)	Mamsa Dhatu	05	25	03	15	08	20

AYUSHDHARA | July - August 2016 | Vol 3 | Issue 4

AYUSHDHARA, 2016;3(4):770-776

Meda Dhatu	03	15	04	20	07	17.5
Asthi Dhatu	20	100	20	100	40	100
Majja Dhatu	12	60	11	55	23	57.5
Shukra Dhatu	00	00	00	00	00	00
C) Strotas Involved						
Rasa-vaha	12	60	10	50	22	55
Rakta-vaha	09	45	09	45	18	45
Mamsa-vaha	05	25	05	25	10	25
Meda-vaha	03	15	03	15	06	15
Asthi-vaha	20	100	20	100	40	100
Majja-vaha	20	100	18	90	38	95
	Asthi Dhatu Majja Dhatu Shukra Dhatu C) Strotas Involved Rasa-vaha Rakta-vaha Mamsa-vaha Meda-vaha Asthi-vaha	Asthi Dhatu20Majja Dhatu12Shukra Dhatu00C) Strotas Involved00Rasa-vaha12Rakta-vaha09Mamsa-vaha05Meda-vaha03Asthi-vaha20	Asthi Dhatu 20 100 Majja Dhatu 12 60 Shukra Dhatu 00 00 C) Strotas Involved 00 00 Rasa-vaha 12 60 Rakta-vaha 09 45 Mamsa-vaha 05 25 Meda-vaha 03 15 Asthi-vaha 20 100	Asthi Dhatu 20 100 20 Majja Dhatu 12 60 11 Shukra Dhatu 00 00 00 C) Strotas Involved	Asthi Dhatu 20 100 20 100 Majja Dhatu 12 60 11 55 Shukra Dhatu 00 00 00 00 C) Strotas Involved	Asthi Dhatu201002010040Majja Dhatu1260115523Shukra Dhatu0000000000 C) Strotas Involved Rasa-vaha1260105022Rakta-vaha0945094518Mamsa-vaha0525052510Meda-vaha0315031506Asthi-vaha201002010040

Table 3: Showing Effect of Symptoms Score of 40 Patients of Katishula

		Group	Group A					Group B				
S. No.	Symptom	ВТ	AT	Difference	Percentage of Relief	BT	AT	Difference	Percentage of Relief			
1	Katishula	46	16	30	65.21	48	25	23	47.91			
2	Akunchan Prasaranyoh Shula	36	10	26	72.22	37	16	21	56.75			
3	Pidanasahatva	38	11	27	71.05	38	16	22	57.89			
4	Shulasya Kala	31	11	20	64.51	36	14	22	61.11			
5	Anidra	30	5	25	83.33	28	9	19	67.85			

Table 4: Showing Effect on Symptoms of 20 Patients of *Katishula* of Group A group by Wilcoxon-Matched – Pairs-Signed-Ranks Test

S.No	Symptom	Mean	SD	SEd	Sum of All Signed Ranks	No. of Pairs	Z	Р
1	Katishula				len.			
	BT	2.3	0.4702	0.1052				
	АТ	0.8	0.5231	0.117	210	20	3.919	< 0.001
	Diff.	1.5	0.513	0.1148				
2.	Akunchan			A. N				
	Prasaranyoh Shula			3.0	2/			
	BT	1.8	0.5231	0.117	37			
	AT	0.5	0.607	0.1358	210	20	3.919	< 0.001
	Diff	1.3	0.4702	0.1052				
3.	Pidanasahatva							
	BT	1.9	0.5525	0.1236	210	20	2.010	.0.001
	АТ	0.55	0.6048	0.1353	210	20	3.919	<0.001
	Diff	1.35	0.4894	0.1095				
4.	Shulasya Kala							
	BT	1.55	0.6048	0.1353	120	1 -	2 407	10 001
	АТ	0.55	0.6048	0.1353	120	15	3.407	< 0.001
	Diff	1	0.7255	0.1623				
5.	Anidra							
	ВТ	1.5	0.513	0.1148	171	10	2 7 2	<0.001
	АТ	0.25	0.4443	0.0994	171	18	3.72	
	Diff.	1.25	0.6387	0.1429				

Table 5: Showing Effect on Symptoms of 20 Patients of *Katishula* of Group B by Wilcoxon- Matched –Pairs-Signed-Ranks Test

S.No	Symptom	Mean	SD	SEd	Sum of All Signed Ranks	No.of Pairs	Z	Р
1	Katishula							
	BT	2.4	05026	0.1124				
	АТ	1.25	0.7164	0.1603	190	19	3.82	< 0.001
	Diff.	1.15	0.4894	0.1095				
2.	Akunchan							
	Prasaranyoh Shula							
	BT	1.85	0.8127	0.1818	190	19	3.82	< 0.001
	АТ	0.8	0.8335	0.1865				

Kalpana gholap, U.S.Nigam. The Role of Matra Basti and Kati Basti in Katishool with Special Reference to Lumbar Spondylosis

0 1, 0				-			1 2
Diff	1.05	0.394	0.0882				
Pidansahatva							
BT	1.9	0.7182	0.1607	171	10	2 7 2 2	< 0.001
AT	0.8	0.9515	0.2129	1/1	10	18 3.723	
Diff	1.1	0.5525	0.1236				
Shulasya Kala							
BT	1.8	0.7678	0.1718	171	18	3.723	< 0.001
AT	0.7	0.8013	0.1793				
Diff	1.1	0.5525	0.1236				
Anidra							
BT	1.4	0.5026	0.1124	12(10	2516	-0.001
AT	0.45	0.6048	0.1353	136	10	3.510	< 0.001
Diff.	0.95	0.6048	0.1353				
	PidansahatvaBTATDiffShulasya KalaBTATDiffAnidraBTAT	Pidansahatva 1.9 BT 1.9 AT 0.8 Diff 1.1 Shulasya Kala 1.8 BT 1.8 AT 0.7 Diff 1.1 AT 0.7 Diff 1.1 AT 0.7 Diff 1.1	Pidansahatva	Pidansahatva	Pidansahatva 1.9 0.7182 0.1607 171 AT 0.8 0.9515 0.2129 171 Diff 1.1 0.5525 0.1236 171 Shulasya Kala 5 0.7678 0.1718 171 AT 0.7 0.8013 0.1793 171 Diff 1.1 0.5525 0.1236 171 AT 0.7 0.8013 0.1793 171 Diff 1.1 0.5525 0.1236 171 AT 0.7 0.8013 0.1793 171 Diff 1.1 0.5525 0.1236 171 Aridra BT 1.4 0.5026 0.1124 136 AT 0.45 0.6048 0.1353 136 136	Pidansahatva 1.9 0.7182 0.1607 171 18 BT 1.9 0.7182 0.1607 171 18 AT 0.8 0.9515 0.2129 171 18 Diff 1.1 0.5525 0.1236 171 18 Shulasya Kala BT 1.8 0.7678 0.1718 171 18 AT 0.7 0.8013 0.1793 171 18 AT 0.7 0.8013 0.1793 171 18 AT 0.7 0.8013 0.1793 171 18 BT 1.1 0.5525 0.1236 171 18 AT 0.7 0.8013 0.1793 171 18 BT 1.1 0.5525 0.1236 11 18 Anidra BT 1.4 0.5026 0.1124 136 16	Pidansahatva BT 1.9 0.7182 0.1607 171 18 3.723 AT 0.8 0.9515 0.2129 171 18 3.723 Diff 1.1 0.5525 0.1236 171 18 3.723 Shulasya Kala BT 1.8 0.7678 0.1718 171 18 3.723 Diff 1.1 0.5525 0.1236 171 18 3.723 AT 0.7 0.8013 0.1718 171 18 3.723 Diff 1.1 0.5525 0.1236 171 18 3.723 AT 0.7 0.8013 0.1793 171 18 3.723 Diff 1.1 0.5525 0.1236 16 3.516 Anidra BT 1.4 0.5026 0.1124 136 16 3.516

Table 6: Showing Comparison between two groups with respect to Symptoms Score by Mann-Whitney test

S.No	Symptom	R ₁	Mean	U	SD	Mean ± 1.96SD	Ζ	Р
1	Katishula	455	190	135	35.59	120.25-259.75	1.53	>0.05
2.	Akunchan Prasaranyoh Shula	437	190	153	35.59	120.25-259.75	1.32	>0.05
3.	Pidansahatva	413	180	157	34.20	112.96-247.032	0.65	>0.05
4.	Shulasya Kala	270	135	120	19.55	96.682-173.31	0.741	>0.05
5.	Anidra	344	144	115	28.98	87.2-200.80	0.983	>0.05

Table 7: Showing Effect on Physical Parameters of 40 Patients of Katishula

S. No.	Physical	Mean ± SD		Mean of	SEd	t	Р
5. NO.	Parameters	BT	AT	Diff. ± SD			
	Angle of Flexion (in deg.)						
1	Group A	94.75 ± 10.696	104.25 ± 11.728	9.5 ±3.203	0.716	13.255	< 0.001
	Group B	90.25 ± 11.751	97.5 ± 11.865	7.25 ± 3.795	0.849	8.537	< 0.001
	Angle of Extension (in						
2	deg)						
2	Group A	19.25 ± 4.375	25 ± 4.588	6.5 ± 2.350	0.525	12.359	< 0.001
	Group B	18.75± 4.8327	25 ± 3.973	6.25 ± 2.75	0.615	10.156	< 0.001
	Distance Between Ground	42	USUDUARA				
	And Middle Finger of		SHUN				
3	Patient (in cm)						
	Group A	19.45 ±4.8175	15.3±5.212	4.15 ± 1.496	0.334	12.396	< 0.001
	Group B	21.1 ± 5.702	17.15 ± 4.837	3.95 ± 2.235	0.5001	7.8983	< 0.001

Table 8: Showing Effect on Haematological Parameters of 40 Patients of Katishula by Paired t Test

S. No	Haematological	Mean ± SD		Mean of Diff.± SD	SEd	t	Р
5. NO	Parameters	ВТ	AT	mean of Diff.± SD			
	Haemoglobin						
1	Group A	11.685 ± 1.2209	11.895 ± 1.1264	0.21 ± 0.5004	0.1119	1.875	>0.05
	Group B	11.755 ± 1.1865	11.99 ± 1.2809	0.235 ± 0.68	0.1521	1.5447	>0.05
	ESR						
2	Group A	28.5 ± 7.8639	26.75 ± 6.9953	1.75 ± 4.0246	0.9003	1.9436	>0.05
	Group B	30.25 ± 7.3044	28.8 ± 6.8333	1.45 ± 4.3222	0.9669	1.4995	>0.05
	Serum. Calcium						
3	Group A	8.685 ± 0.825	9.0425 ± 0.6904	0.357 ± 0.8459	0.1892	1.8890	>0.05
	Group B	8.23 ± 0.6449	8.36 ± 0.6159	0.13 ± 0.3326	0.0744	1.7470	>0.05
	Serum. Alkaline						
5	Phosphatage						
5	Group A	63.69 ± 17.322	62.1 ± 13.095	1.591 ± 5.800	1.297	1.225	>0.05
	Group B	58.58 ± 3.876	58.54 ± 4.153	0.039 ± 2.32	0.520	0.07	>0.05

 Table 9: Showing Effect on Lipid profile Parameters of 40 Patients of Katishula by Paired t Test

S. No.	Lipid Profile	Mean ± SD		Mean of Diff.± SD	SEd	t	Р
	Parameters	ВТ	AT				
1	Cholesterol						
	Group A	178.69 ± 35.8741	173.465 ± 36.29	5.225 ± 8.2879	1.8541	2.8180	< 0.05
	Group B	180.43 ± 36.927	172.5 ± 31.375	7.90 ± 12.720	2.845	2.77	< 0.05

AYUSHDHARA | July - August 2016 | Vol 3 | Issue 4

AYUSHDHARA, 2016;3(4):770-776

2 Triglyceride Image: constraint of the state of
Group B 136.64 ± 66.7708 126.975 ± 72.6947 9.67 ± 22.49 5.0331 1.9212 >0 3 HDL >0 3 HDL <
3 HDL Group A Group B 32.267 ± 5.7796 33.084 ± 6.2411 35.46 ± 6.9766 30.18 ± 4.90 3.193 ± 6.3364 2.89 ± 5.15 1.4175 1.154 2.2525 2.50 <0
Group A Group B 32.267 ± 5.7796 33.084 ± 6.2411 35.46 ± 6.9766 30.18 ± 4.90 3.193 ± 6.3364 2.89 ± 5.15 1.4175 1.154 2.2525 2.50 <0
Group B 33.084 ± 6.2411 30.18 ± 4.90 2.89 ± 5.15 1.154 2.50 <0
4 LDL
Group A 148.06 ± 36.58 153.03 ± 38.1890 4.969 ± 13.487 3.0172 1.6468 >0
Group B 147.483 ± 28.8153 144.0065 ± 29.277 3.4765 ± 11.8874 2.6593 1.3072 >0
5 VLDL
Group A 27.095 ± 15.5057 25.222 ± 16.2808 1.8725 ± 6.0494 1.3533 1.3836 >0
Group B 25.5455 ± 15.0714 23.9355 ± 11.7790 1.61 ± 5.2828 1.1825 1.3615 >0

Table 10: Showing Comparison between Two Groups by Unpaired t Test

C No	Parameters	Mean of Diff. ± SD		Sed.		
S. No.	Parameters	Group A	Group B	seu.	t	Р
1.	Cholesterol	5.225 ± 8.287	7.90 ± 12.720	3.39	0.78	>0.05
2.	HDL	3.193±6.336	2.89 ± 5.15	1.825	0.16	>0.05
3.	Angle of Flexion	9.5 ± 3.203	7.25 ± 3.795	1.01	2.227	< 0.05
4.	Angle of Extention	6.5 ± 2.350	6.25 ± 2.75	0.80	0.937	>0.05
5.	Distance Between Ground and Middle Finger of Patient	4.15 ± 1.496	3.95 ± 2.235	0.60	0.33	>0.05

Table 11: Showing Total Effect of Therapy in 40 Patients of Katishula

Sr.No.	Total Effect of Therapy	Group A		Group B		Total	
51.NO.		No. of Pts.	%	No. of Pts.	%	No. of Pts.	%
1	Cured	0	0%	0	0%	0	0%
2	Markedly Improved	11	55%	10	50%	21	52.5%
3	Improved	09	45%	10	50%	09	47.5%
4	Unchanged	0	0%	0	0%	0	0%

Table 12: Showing Comparison between Two Groups by Chi-Square Test

Sr.No.	Group	Improved	Markedly improved	Total	Chi-square value
1	Group A	(0)=09	(0)=11	20	
		(E)=9.5	(E)=10.5		0.08
2	Group B	(0)=10	(0)=10	20	>0.05
		(E)=9.5	(E)=10.5		

DISCUSSION

The significance of the result obtained in this study is being discussed in brief.

- 1. *Katishula* is chronic disorder due to excessive sedentary and standing type of work.
- 2. Mostly *Katishula* is found between age group 30 to 60 years.
- 3. There were more prevalent in female patients than males.
- 4. Most of the patients had habit of taking *Katu rasa* and *Shita, Laghu Guna ahara.*
- 5. *Katishula* occurs mostly because of *Asthi, Majja Dhatu* and *Strotas dushti.*
- 6. It is observed that there was significant improvement in symptoms like *Katishula, Akunchan Prasaranyoh Shula, Pidanasahatva, Shulasya Kala,* and *Anidra* in both groups. Overall percentage of relief was more in Group A (72.33%) than Group B (64.33%).
- 7. Angle of Flexion, Angle of Extension, Distance between Ground and Middle Finger of Patient were significantly improved in both Group A and Group B. There was no significant difference found between two groups in parameters such as Angle of

Extension, Distance between Ground and Middle Finger of Patient. Angle of Flexion was significantly increased in Group A.

8. In the present study none patient showed total relief in symptoms. In case of Group A 11 patients (55%) were markedly improved and 09 patients (45%) were improved.

In case of Group B 10 patients (50%) were markedly improved and 10 patients (50%) were improved. Follow up study of 40 patients was done. It was observed that no deterioration seen after completion of *Basti*.

CONCLUSION

Hence it can be said that due to *Basti* there is *Shodhan* of *Pakvashayastha mala* & *Sthanik dosha* which leads to Shaman of *Vata dosha*.

However it can be concluded that *Prasarni giloy Matra Basti & Katibasti* is found to be very much symptomatically effective in patients suffering from *Katishula*.

In this study, *Basti* is given only for 9 days. As *Katishula* is a *Yapya Vyadhi*, if this *Basti* is given over a

Kalpana gholap, U.S.Nigam. The Role of Matra Basti and Kati Basti in Katishool with Special Reference to Lumbar Spondylosis

long period of time along with other medication results would be more significant.

REFERENCES

- 1. Vaidya Jadavaji Trikamji Acharya, *The Charakasamhita of Agnivesha*, with Ayurveda Dipika commentary, New Delhi, Munshiram Manoharlal Publishers Pvt. Ltd. 1981.
- 2. Vaidya Yadavaji Trikamji Acharya, *Shusrut samhita* of Susruta, with the Nibandhasangraha commentary, Varanasi, Chaukhamba Orientalia publication. 1997.
- 3. Pandit hari Sadashiv Shastri, *Ashtangahridya* of *Shrimadvagbhatta*, with Sarvangasundari and Ayurvedarasayana commentary, Varanasi, Cahukhanba surbharti prakashana. 2010.
- 4. Acharya Thakkar V. J., Ashtangasangraha, with Indu commentary, New Delhi, Kendriya Ayurveda & Siddha anusandhana parishada.

- 5. Shri Yadunandanopadhyaya, *Madhava Nidana of Sri Madhavakara,* with Madhukosha commentary, Varanasi, Chaukhamba Prakashana. 2008.
- 6. Prof. Siddhi Nandan Mishra, *Bhaishajya Ratnavali of Kaviraj Govind Das Sen*, with Siddhiprada commentary, Varanasi, Cahukhanba surbharti prakashana. 2005.
- 7. Dr. Brahamanand Tripathi, *Sharangadhara Samhita* of Pandita Sharangadharacharya, with Dipika commentary, Varanasi, Cahukhanba surbharti prakashana. 2007.
- 8. Dr. Chunekara K.C., *Bhavaprakasha Nighantu of Shri Bhavamishra*, Varanasi, Chaukhamba Bharati Academy, 2006, Guduchyadi varg, page no.424.
- 9. Clinical Orthopaedic Diagnosis: Sureshwar Pandey & Anil Kumar Pandey 3rdEdition.
- 10. Prof. Singh R.H., *Panchakarma Therapy*, Varanasi, Chaukhamba Sanskrita Sansthana.

Cite this article as:

Kalpana Gholap, U.S.Nigam. The Role of Matra Basti and Kati Basti in Katishool with Special Reference to Lumbar Spondylosis. AYUSHDHARA, 2016;3(4):770-776. *Source of support: Nil, Conflict of interest: None Declared*

