

An International Journal of Research in AYUSH and Allied Systems

Review Article

HYPOTHESIZING THE MECHANISM OF ACTION OF *VIRECHANA* IN NEUROLOGICAL DISEASES WITH RESPECT TO THE GUT-BRAIN MICROBIOTA AXIS

Adarsh P M1*, Anup B Thakar2

*1PhD Scholar, 2Professor & HOD, Department of Panchakarma, Institute of Teaching and Research in Ayurveda, Jamnagar, Gujarat, India.

Article info

Article History:

Received: 06-08-2025 Accepted: 03-09-2025 Published: 30-09-2025

KEYWORDS:

Virechana, Vatarogas, Microbiota-gut-Brain Axis, Neurological Diseases,

ABSTRACT

Panchakarma is an efficient and popular Ayurvedic treatment modality that helps eliminate various Doshic imbalances in the body to prevent and treat diseases. Its efficacy is being proven through multiple studies conducted across the globe; still, the mode of action of these therapies is to be understood far and wide. Virechana is one of the Panchakarmas that have an impact on the whole body to remove the *Doshas* that spread across the entire system. Due to this reason, it is considered best in the management of many disorders affecting different systems of the body, including the nervous system. The present review aimed at understanding the mechanism of action of *Virechana* with respect to the microbiota-gut-brain axis in neurological diseases. Virechana using Mridu and Snigdha medicines is mentioned for the management of Vatarogas. As Virechana is considered the primary treatment of pitta, its effect may be related to hormones and enzymes having neuroregulatory properties also. The microbiota-gut-brain axis plays an active role in the pathogenesis, management, and prevention of neurological diseases. Gastrointestinal complications like constipation are common in diseases affecting the nervous system, and they have shown a negative correlation with neurological recovery. Here comes the importance of Snigdha virechana or Mridu virechana mentioned in Vatavyadhi. Virechana can remove unfavorable bacterial colonization and is effective in correcting gut flora dysbiosis. Thus, the mechanism of action of Virechana in modifying the gut-brain axis and thereby facilitating neurologic recovery is understood. The present review sheds light on the Mechanism of action of Virechana with respect to the microbiota gut-brain axis in neurological disorders, which may be helpful for further research.

INTRODUCTION

Panchakarma is an effective and popular Ayurvedic treatment method used to eliminate various Doshic imbalances in the body, helping to address and prevent ailments. Its effectiveness has been supported by numerous studies conducted worldwide, but the mechanisms behind these therapies still need further understanding. Virechana is one of the panchakarmas that impacts the entire body to remove doshas that are dispersed throughout the system.

Access this article online
Quick Response Code

ht
pu
At
In

https://doi.org/10.47070/ayushdhara.v12i4.2233

Published by Mahadev Publications (Regd.) publication licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Because of this, it is considered ideal for managing many different conditions affecting various body systems.

In Ayurveda, Yukti (logical reasoning) is regarded as one of the methods for acquiring knowledge. To hypothesize the potential mechanism of Virechana regarding the microbiota gut-brain axis, various connections between factors related to Virechana or the microbiota gut-brain axis are analyzed. This includes Ayurvedic references showing the effectiveness of Virechana in neurological disorders, the link between the development of neurological disorders and gut dysbiosis, the role of Virechana in restoring normal gut microbial composition and managing gastrointestinal complications-which can further delay neurological

recovery-and Ayurvedic references supporting proper gut microbial functioning after *Virechana*.

Vatarogas are always associated gastrointestinal issues since Pakvasaya is considered the root of all Vatarogas. Virechana, performed with mildly potent and oily medicines, is recommended for managing Vatarogas. The significance of Mridu virechana/ mild therapeutic purgation in Vatarogas should be explained and scientifically validated to understand its mechanism better and to promote related research in the future. Virechana is regarded as one of the *Shodhana* (whole-body purification) procedures, capable of influencing even the subtle levels of an organ system. Since Virechana is viewed as the primary treatment for *Pitta*, its effects may involve hormones and enzymes with neuroregulatory functions.

The enteric nervous system (ENS) in the gastrointestinal (GI) tract and the central nervous system (CNS) communicates through a bidirectional system that involves neuronal, immunological, and endocrine pathways. This is known as the microbiotagut-brain axis or gut-brain axis. Constipation is a gastrointestinal problem in common affecting the nervous system, and research has shown that this condition negatively correlates with This neurological recovery. underscores importance of Sniadha virechana or Mridu virechana. as mentioned in *Vatavyadhi*. In Ayurveda, treatment aims not only to reduce symptoms and pre-existing weakness but also to reverse the disease process by addressing the root causes. The improper functioning of gut microbiota is associated with numerous neurological disorders. Virechana been has demonstrated to influence microbiota composition. Therefore, Virechana likely plays a role in modifying the gut-brain axis to support neurological recovery.

Data Sources

Brihattrayis (Ayurveda classics) were referred to for reviewing the application of *Virechana* in Vatarogas, as well as the benefits of Virechana in various aspects. To review the role of the microbiota gut-brain axis in neurological diseases, the role of Virechana in the gut-brain axis, and the gastrointestinal complications associated with neurological diseases, the PubMed database was primarily referred to, along with some previous thesis works.

Review methods

A detailed review of *Virechana* in *Vataroga*s was done from the classical textbooks. Details and updates of research in the microbiota-gut-brain axis, neurological diseases, and *Virechana* were reviewed from the PubMed database. The data collected were compiled, and the mechanism of action of *Virechana* is

hypothesized with respect to the microbiota gut-brain axis.

Methods

Role of *Virechana* in *Vatarogas* (neurological disorders)- Ayurvedic perspective

Virechana is used to reduce pitta dosha when it is aggravated or dominant, especially when associated with Kapha dosha or when Kapha accumulates in place of Pitta.[1] It is recommended for conditions such as Udavarta, Urdhvaga Raktapitta, Chardi, and Timira caused by the *Pratilomagati* of *Vata dosha*, along with the primary *Doshic* pathology. There is a *pratiloma gati* of Vata in the development of Pakshaahata, which occurs due to various Sroto vaigunyas, such as Sanga (as in arteriosclerosis and atherosclerosis), Grandhi (aneurysm), and Vimargagamana (thrombotic stroke), among others. Therefore, Virechana therapy targets both the Anulomana of Vata dosha and the removal of aggravated doshas responsible for the *Pratilomata* of Vayu. Sneha Virechana is the type of Virechana mentioned for treating Vatarogas.[2] Mridu virechana, also known as Snigdha virechana, is recommended for Vataroaas due to the predominance of Vata dosha and the presence of associated doshas at the onset of the disease. This can support Vatanulomana, Vatadosha samana, and the elimination of associated doshas. The Avarana of Vyanavayu over other Vayus like prana and apana causes Suptagatrata (loss of sensation) and Udavarta, respectively. The treatment for Avarana caused by *Vyanavayu* includes either *Snigdha* virechana or Snigdha anulomana.[3] Sneha virechana is also recommended in Vegantara chikitsa for Apatanaka and Bahirayama.[4] Virechana is indicated when Vata is aggravated in Rakta, Mamsa, Meda, and Sukramarga vibadhatha.[5] It is the preferred treatment when Kapha is present in Pakvashaya in Vatarogas.[6] Snigdha virechana is again the treatment for Pakvashayagata vata.[7] Since pakvashaya is the root of all Vatarogas, pacifying Vata dosha at its source can cure all types of *Vatarogas*. When *Vata* is blocked by Snigdhanulomana with Erandataila recommended.[8] Administering Virechana followed by Shamana therapy in patients with Pakshaghata (post-CVA) resulted in significant improvement in motor function, muscle power, and reduction of exaggerated reflexes and muscle tone. This highlights the role of Virechana in neurological recovery.[9] Virechana, followed by Samana medicine, was used in Pakshaghata and led to improvements in finger movement, arm lifting, wrist drooping, muscle strength, handgrip, and walking downstairs. Most patients showed marked improvements in all symptoms.[10] Virechana karma resulted in a better overall quality of life and reduced speech slurring over Kala basti.[11] Snehayuktha Virechana provided greater

relief from pain, improved ability to sit up from a supine position, stand from sitting, speech, muscle tone, and muscle power, among other benefits.[12]

The gut-brain axis, gut dysbiosis, and neurological diseases

Gut dysbiosis is the change in the functional composition. metabolic activities. and local distribution of microbiota by the underrepresentation of usually dominating species by outcompeted or contained species, often related to the gastrointestinal tract. Gut dysbiosis is said to be one of the leading causes of neurological diseases. The gut-brain axis links the various centers of the brain with peripheral intestinal functions through bidirectional communication between the CNS and ENS under the influence of gut microbiota. The gut microbiome is thought to affect emotion regulation, anxiety, cognitive function, and various diseases, such as autism spectrum disorders, attention deficit-hyperactivity disorder, Parkinson's disease, Alzheimer's disease, stroke, epilepsy, multiple sclerosis, and depression, as a result of bidirectional interactions between the intestine and the brain.[13] These bidirectional connections involve several neurotransmitters and neuromodulators, including vasoactive intestinal polypeptide (VIP), brain-derived neurotrophic factor (BDNF), etc. The altered Composition of the gut microbiota affects the level of BDNF. Similarly, in the case of VIP, the deficiency of which leads to altered gut microbiota composition in mice.[14] The alterations in the gut microbial composition may affect the functions and vice versa.[15] Gut neurological microbiota has the role of interacting and activating the pattern of recognition receptors (PRRs), thereby influencing the development, functions, and disorders of the CNS and ENS. [16] On this evidence, a probiotic cocktail (Lactobacillus rhamnosus GG) was used to achieve a reduction of anxiety- and depression-related behaviors in mice.[17] The same product was also administered to healthy human beings to get a similar effect.[18]

Microbiota and stroke

Patients who had strokes or ischemic attacks marked reduction in blood **TMAO** (trimethylamine N-oxide) levels as well as a considerable dysbiosis of the gut flora. Therefore, treatments for microbiota dysbiosis may be utilized to manage stroke and stop subsequent episodes of the same. [19] The treatment of stroke patients could also benefit from restoring the balance and health of their gut microbiota. The dysbiosis of the gut microbiota results from acute brain injury, and the level of dysbiosis significantly influences post-stroke immunological changes and stroke outcomes.[20]

Microbiota and Parkinson's disease

In the case of Parkinson's disease (PD), there is a significant contribution of microbiota to motor deficits and neuroinflammation. Alterations in the human gut microbiome are one of the risk factors for PD.^[21] The altered communication between gut microbiota and the mucosal immune system leads to the development and exacerbation of PD ^[22]. There is a proven association between characteristic shifts in the gut microbiota and the progression of PD ^[23]. PD is caused by systemic and neural inflammation, which is produced because of impairment of the integrity of both the intestinal barrier and blood-brain barrier caused by an increase in putative pathobionts and alterations of bacteria with the capacity to produce short-chain fatty acids.^[24]

Microbiota in Autism Spectrum disorder and Intellectual disability

Patients with intellectual disability and autism spectrum disorder have mutations in members of the KDM5 gene family. KDM5 and microbial interactions affect animal social behaviour. In Drosophila, the absence of KDM5 caused abnormal immune activation, social behaviour issues, and gut dysbiosis. Using a probiotic (Lactobacillus plantarum L168) may help improve these signs, indicating that directly modifying the gut microbiome could be a therapeutic option for individuals with ID and ASD.[25]

Microbiota and Alzheimer's disease

Aging changes the composition of gut microbes, which can lead to gastrointestinal problems and nervous system disorders, including dementia. One such disorder is Alzheimer's disease (AD), primarily affecting older adults. Gut microbial dysbiosis results in the secretion of amyloid and lipopolysaccharides (LPS), disrupting the blood-brain barrier and gastrointestinal permeability. These changes then affect the inflammatory signalling system, causing neuroinflammation, neuronal damage, and neuronal death in AD. Taking strong probiotics may help manage AD. [26]

Gastrointestinal complications and neurological diseases

Virechana is a detoxification procedure effective in removing doshas that have accumulated in the Koshta and Shakha. Most gastrointestinal complications are resolved after Virechana. Since GI complications act as barriers to faster recovery in stroke patients and other neurological diseases, understanding their connection is more essential and effective. Constipation is the second most common gastrointestinal complication in stroke patients after dysphagia. It affects 45% of patients during their acute stage and 48% during their rehabilitation stage. [27] In Alzheimer's disease, there is a higher incidence of serious upper and lower gastrointestinal events

compared to individuals without AD.^[28] The GI symptoms common in Parkinson's disease include dysphagia, constipation, and defecatory dysfunction. Constipation increases in both severity and frequency.^[29] Gastrointestinal dysautonomia is linked to reductions in dopamine transporter (DAT) availability. There is a very close link between constipation and caudate–DAT reduction. Reduced bowel movements may be associated with progression of nigral degeneration or changes in nigrostriatal dopamine function.^[30]

Role of microbiota in gastrointestinal diseases

Many gastrointestinal diseases are linked to imbalances in microbial composition. Manipulating gut microbiota is also viewed as an effective treatment option for managing these conditions.

Effect of Virechana and microbiota-gut-brain axis

Virechana helps reduce the colonization of aerobic bacteria and corrects gut flora dysbiosis.[31] Consumption of the laxative notably increased the levels of Proteobacteria, Fusobacteria, and bacteria Dorea formicigenerans.[32] related to Proteobacteria are thought to play a key role in preparing the gut for colonization by strict anaerobes, which is necessary for healthy gut function, by consuming oxygen and lowering the redox potential in the gut environment. Fusobacteria activate host inflammatory responses designed to protect against pathogens that promote tumor growth. The role of microbiota in digestion and metabolism is evident from previous research. According to Ayurveda, Agni is essential for proper digestion and metabolism. Adequate functioning of Agni implies excellent gastrointestinal health and, thereby, an appropriate microbiota of gut composition and function. From an Ayurvedic perspective, a strong and stable digestive mechanism, known as Urjo agni, is a key benefit of Virechana.[33] The Samsarjana krama modification after *Virechana*) is also intended to make Agni strong and stable systematically, which is necessary to digest the various forms of diet we intake.[34] This is possible only under a healthy microbial composition in the gut. Snigdha virechana is the ultimate solution for chronic constipation, which is always associated with gut dysbiosis. Intestinal neuropeptides have a role in the bidirectional communication pathways in the microbiota gut-brain The metabolites produced by the gut microbiome's influence have receptor some mechanisms in common with these neuropeptides.

Discussion

Mridu samshodhana, also known as Mridu virechana, is included in the treatment protocol for diseases of Vata origin. Sneha virechana is also a specific treatment method for many of the Vatarogas

Apatanaka. Pakshaghata, Avarana Pakvashavagata vata, Timira, and Udavarta, where there is an associated dosha aggravation causing the abnormality in the normal flow of Vatadosha. The microbiota-gut-brain axis is the bidirectional communication between CNS and ENS, and its involvement is proven in many neurological diseases like Autism spectrum disorders. Intellectual disability. Parkinson's various psychological disease. disturbances, and stroke. Gut dysbiosis leads to the development of these disorders, and treatments that correct or improve this can result in better neurological outcomes. Studies have also shown that Virechana plays a role in remedying gut flora imbalance; therefore, the mechanism of Virechana's action probably relates to restoring the microbiota gutbrain axis in Vatarogas. However, further detailed studies are needed to confirm this.

CONCLUSION

Sneha virechana is the treatment of many vatarogas which are having neurological impairment. Virechana in Vatarogas is helpful in Vatashamana, Vatanulomana, and Anubandha dosha samana. The microbiota gut-brain axis is involved in most of the neurological disorders, in their pathogenesis and therapeutic outcome. Virechana has been proven to correct gut dysbiosis and help promote practical gut reorientation. Thus, the mechanism of action of Virechana can be related to the microbiota-gut-brain axis, especially in neurological disorders.

References

- 1. Vridha Vagbhata, Ashtanga sangraha, Sasilekha commentary by Indu, 2nd edition, Chaukhamba samskrutha series office, Varanasi 2008, chapter 4 verse 22, Pg no.203
- 2. Sushruta Samhita, Chikitsasthana, Vatavyadhi chikitsitam, 4/21. Available from: https://niimh.nic.in/ebooks/esushruta
- 3. Charak Samhita, Chikitsa sthana, Vatavyadhi chikitsitam, 28/204. Available from: https://niimh.nic.in/ebooks/ecaraka
- 4. Sushruta Samhita, Chikitsa sthana, Mahavatavyadhi chikitsitham, 5/18. Available from: https://niimh. nic.in/ebooks/ecaraka (Accessed on 12 July 2024)
- Charak Samhita, Chikitsa sthana, Vatavyadhi chikitsitam, 28/92-94. Available from: https:// niimh.nic.in/ebooks/ecaraka (Accessed on 13 July 2024)
- 6. Charak Samhita, Chikitsa sthana, *Vatavyadhi chikitsitam*, 28/189. Available from: https://niimh.nic.in/ebooks/ecaraka
- 7. Sushruta Samhita, Chikitsa sthana, *Vatavyadhi chikitsitam*, 4/5. Available from: https://niimh.nic.in/ebooks/esushruta

- 8. Charak Samhita, Chikitsa sthana, *Vatavyadhi chikitsitam*, 28/197. Available from: https://niimh.nic.in/ebooks/ecaraka
- 9. Dr Dushti Dev Sahu (2005). A clinical study on Pakshaghata due to cerebro-vascular accidents and its Upashayatmaka management. Department of Roganidana and Vikriti Vijnana, I.T.R.A., Jamnagar.
- 10. Dr Ashutosh Pandya (2003). A Comparative Study of Virechana Karma and Sramsana in the Management of Pakshaghata. Department of Panchakarma, I.T.R.A, Jamnagar.
- 11. 11.Vimal M vekariya (2008). Comparative Study of Virechana Karma and Kala Basti in The Management of Pakshaghata. Department of Panchakarma, I.T.R.A, Jamnagar.
- 12. Lokesh Tripti (2013). A Comparative Study of Virechana (Snehayukta Virechana) & Shamana Chikitsa in Pakshaghata. Department of Panchakarma, I.T.R.A, Jamnagar.
- 13. Castillo-Álvarez F, Marzo-Sola ME. Papel de la microbiota intestinal en el desarrollo de diferentes enfermedades neurológicas. Neurología. 2022; 37:492–498.
- 14. Bains M, Laney C, Wolfe AE, Orr M, Waschek JA, Ericsson AC, Dorsam GP. Vasoactive Intestinal Peptide Deficiency Is Associated with Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Front Microbiol. 2019 Dec 2; 10:2689. doi: 10.3389/fmicb.2019.02689. PMID: 31849864; PMCID: PMC6900961.
- 15. Cryan J.F., O'Riordan K.J., Sandhu K., Peterson V., 2. Dinan T.G. The gut microbiome in neurological disorders. *Lancet Neurol* 2020; 19: 179–194. doi: 10.1016/S1474-4422(19)30356-4.
- 16. Heiss C.N., Olofsson L.E. The role of the gut microbiota in development, function, and disorders of the central nervous system and the enteric nervous system. *J.* Neuroendocrinol. 2019; 31: e12684. doi: 10.1111/jne.12684. PMID: 30614568 DOI: 10.1111/jne.12684
- 17. Kantak P.A., Bobrow D.N., Nyby J.G. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav Pharmacol. 2014; 25: 71–79 PMID: 24257436
 - DOI: 10.1097/FBP.0000000000000013
- 18. Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011; 2:256–261.] PMID: 21983070 DOI: 10.4161/gmic.2.4.16108
- 19. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW. Dysbiosis

- of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015 Nov 23; 4(11): e002699. doi: 10.1161/JAHA.115.002699. PMID: 26597155; PMCID: PMC4845212.
- 20. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J Neurosci. 2016 Jul 13; 36(28): 7428-40.
- 21. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 2016; 167(6): 1469-1480.
- 22. Cilia R, Piatti M, Cereda E, et al. Does gut microbiota influence the course of Parkinson's disease? A 3-year prospective exploratory study in de novo patients. J Parkinsons Dis. 2021;11(1): 159-170.
- 23. Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson's disease is associated with gut dysbiosis: A two-year follow-up study. *PLoS One*. 2017; 12(11): e187307.
- 24. Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, Wu B, Zou T, Luo X, Zhang X, Zeng Y, Liu Z, Zhou Z, Yue Z, Ren Y, Li Z, Su Q, Xu P. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther. 2023 Jan; 29(1): 140-157. doi: 10.1111/cns.13990.
- 25. Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, Mao JH, Secombe J, Dan Z, Chen JH, Wang Z, Dong X, Qiu C, Chang X, Zhang D, Celniker SE, Liu X. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host Microbe. 2019 Apr 10; 25(4): 537-552.e8.
- 26. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of the gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci. 2021 Jan 1; 264: 118627. Doi: 10.1016/j.lfs.2020.118627.
- 27. Li J, et al. Incidence of constipation in stroke patients: a systematic review and meta-analysis. Medicine (Baltimore) 2017; 96(25): e7225. Doi: 10.1097/MD.00000000000007225.
- 28. Wu JH, Guo Z, Kumar S, Lapuerta P. Incidence of serious upper and lower gastrointestinal events in older adults with and without Alzheimer's disease. J Am Geriatr Soc. 2011 Nov; 59(11): 2053-61. doi: 10.1111/j.1532-5415.2011.03667.
- 29. Edwards L, Quigley EM, Hofman R, Pfeiffer RF. Gastrointestinal symptoms in Parkinson's disease: 18-month follow-up study. Mov Disord. 1993; 8(1): 83-6.

- 30. Hinkle JT, Perepezko K, Mills KA, Mari Z, Butala A, Dawson TM, Pantelyat A, Rosenthal LS, Pontone GM. Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson's disease. Parkinsonism Relat Disord. 2018 Oct; 55: 8-14. doi: 10.1016/j.parkreldis.2018.08.010. Epub 2018 Aug 22. PMID: 30146185; PMCID: PMC6291234.
- 31. Chaturvedi A, Nath G, Yadav VB, Antiwal M, Shakya N, Swathi C, Singh JP. A clinical study on Virechana Karma (therapeutic purgation) over the gut flora with special reference to obesity. Ayu. 2019 JulSep; 40(3): 179-184. doi: 10.4103/ayu.AYU_302_

- 19. Epub 2020 Aug 8. PMID: 33281395; PMCID: PMC7685265.
- 32. Jalanka J, Salonen A, Salojärvi J, Ritari J, Immonen O, Marciani L, Gowland P, Hoad C, Garsed K, Lam C, Palva A, Spiller RC, de Vos WM. Effects of bowel cleansing on the intestinal microbiota. Gut. 2015 Oct; 64(10): 1562-8. doi: 10.1136/gutjnl-2014-307240. Epub 2014 Dec 19. PMID: 25527456.
- 33. Charak Samhita, Siddhi sthana, Kalpana sidhi, 1/17. Available from: https://niimh.nic.in/ebooks/ecaraka
- 34. Charak Samhita, Siddhi sthana, Kalpana sidhi, 1/13. Available from: https://niimh. nic.in/ebooks/ecaraka

Cite this article as:

Adarsh P M, Anup B Thakar. Hypothesizing the Mechanism of Action of Virechana in Neurological Diseases with Respect to the Gut-Brain Microbiota Axis. AYUSHDHARA, 2025;12(4):327-332.

https://doi.org/10.47070/ayushdhara.v12i4.2233

Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence Dr. Adarsh P M

PhD Scholar,

Department of Panchakarma, Institute of Teaching and Research in Ayurveda, Jamnagar.

Email: adarshpmkurup@gmail.com

Disclaimer: AYUSHDHARA is solely owned by Mahadev Publications - A non-profit publications, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. AYUSHDHARA cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of AYUSHDHARA editor or editorial board members.