

An International Journal of Research in AYUSH and Allied Systems

Research Article

PHARMACEUTICAL PREPARATION OF *ABHRAKA BHASMA*: A CLASSICAL APPROACH COVERING ALL STAGES OF PROCESSING

Vikas Kumar Baletiya^{1*}, Govind Sahay Shukla², Rajaram Agarwal³, Manisha Goyal³, Ravi Pratap Singh⁴

*1MD Scholar, ²HOD & Professor, ³Associate Professor, ⁴Assistant Professor, PG Dept. of Ras Shastra & Bhaishajya Kalpana, Post Graduate Institute of Ayurveda, Dr. Sarvepalli Radhakrishnan Rajasthan Ayurveda University, Jodhpur, Rajasthan, India.

Article info

Article History:

Received: 12-08-2025 Accepted: 04-09-2025 Published: 30-09-2025

KEYWORDS:

Abhraka, Shodhana, Dhanyabhraka, Marana, Amritikarana, Lohitikarana.

ABSTRACT

Abhraka (mica) is essential in Rasashastra for its Rasayana properties and therapeutic applications. However, its raw form is unsuitable for direct medicinal use. To make it safe, effective, and easy for the body to absorb, it goes through special Ayurvedic processes. These include Shodhana, Dhanyabhraka, Marana, Amritikarana, and Lohitikarana. Materials and Methods: Raw Abhraka underwent sequential procedures Shodhana, Dhanyabhraka, Marana, Amritikarana, and Lohitikarana. Observations were recorded for changes in weight, texture, color, and classical parameters such as Nischandratva, Rekhapurnata, and Varitaratwa. Results: Shodhana caused 9.8% weight loss with improved brittleness and reduced impurities. Dhanyabhraka showed 23.83% weight loss, effective leaching, and pH reduction. Marana led to a 14.7% weight loss with color transition from blackish red to dull red. Amritikarana enhanced stability and reduced toxicity, while Lohitikarana imparted a red tinge and improved therapeutic potential. The final Bhasma was non-lustrous, floatable, and therapeutically active. Discussion: Stepwise processing confirmed the classical principles of Rasashastra, validating Ayurvedic principles of purification and incineration, ensuring safety, bioavailability, and Rasayana potential.

INTRODUCTION

Abhraka (mica) holds great significance in Rasashastra of Ayurveda because of its wide therapeutic uses and Rasayana qualities. Before it can be administered as medicine, it undergoes several traditional processes such as Shodhana (purification) literally means purification that includes physical as well as chemical purification of the drug along with which enhances therapeutic properties of drug^[1], Dhanyabhraka (grain treatment), Marana literally means process of killing of any metallic drug to make it fit for internal administration is called as Mārana or incineration^[2]. Amritikarana (enhancement and detoxification) eliminate the remaining Dosas of any '

Access this article onli	ī
Quick Response Code	
	_

https://doi.org/10.47070/avushdhara.v12i4.2238

Published by Mahadev Publications (Regd.) publication licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Dhatu bhasma (incinerated metal)[3], and Lohitikarana (color conversion) carried out on prepared 'Bhasma' to induce 'Rakta varṇa' (red colour)[4]. Through such detailed procedures, raw Abhraka is converted into Abhraka Bhasma a safe, effective, and bioavailable form. Internal administration of Ashuddha Abhraka leads to various disorders like Kshaya, Kustha, Karshya, Pandu, Shotha, and Hrit parshvashula[5]. Clinically, it is employed in managing respiratory, digestive, and chronic conditions, while also serving as a rejuvenator, immunity booster, and anti-inflammatory agent, with standardized preparation ensuring consistency and safety. Abhraka Bhasma has the capability to induce insulin secretion from pancreatic b-cells, thereby reducing the blood glucose level by acting as a cellular regenerator^[6].

MATERIALS AND METHODS

Selection & Procurement of material

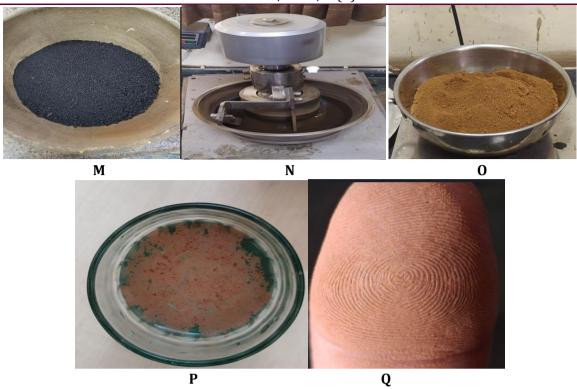
Authentic *Abhraka* was identified using *Grahya Lakshanas*- black color, smooth heavy texture,

resistance to fire, and easy laminar separation. To ensure safety, the raw sample was also tested by ICP-MS. Results showed aluminium 58,912.788mg/kg, Iron 110,774.422mg/kg, and magnesium 35,035.388mg/kg, with no toxic heavy metals detected. Thus, both traditional parameters and modern analysis confirmed the purity and suitability of the procured *Abhraka*.

Pharmaceutical processing's of Abhraka

Shodhan of Abhraka[7]


Principle: *Nirvapa* in *triphala kwath* for seven times.


MATERIALS AND METHODS

Raw materials

- Krishnavajrabhraka 1 kg
- Media Used: Triphala Kwatha

Shodhana process: As part of the *Shodhana* of *Abhraka*, 1000gm of raw mica had to be cleansed, left to air dry, heated until red hot, and then quenched in *Triphala Kwatha*. The quenched *Abhraka* was collected and left to dry in the sun after being stirred into finer particles. This *Nirvapa* process was repeated for each cycle to ensure complete purification.

Figure: (A) Heat testing of Raw *Abhraka* (B) Red hot by fire gun (C) *Nirvapa* process (D) *Abhraka* after *Shodhana* (E) *Dhanyabhraka* (F) *Bhawana* Process (G) *Chakrika Nirmana* (H) *Sharava Samputikarana* (I) *Sharava* put in the puta (J) *Marana* Process (k) After 15th put *Abhraka* (L) *Bharjana* process (M) After *Amritikarana Abharaka* (N) *Lohitikarana* Dravya Bhawana (O) Final *Abhraka Bhasma* (P) *Varitara* (Q) *Nischandra*

Table 1: Depicts changes observed in Abhraka in each Nirvapa

Nirvapa	Colour	Appearance		
Initially	Black	Solid mass		
*1st	Shiny Black	Pieces softened; layers separated		
*2nd	Shiny Black	Small pieces and chunks present		
*3rd	Shiny black with golden sheen	Semi powder form with small chunks present		
*4 th	Shiny black with golden lustre (+)	Powder form, fine dispersed particles		
*5 th	Black with stronger golden lustre (++)	Fine dispersed particles in surroundings		
*6 th	Bright golden lustre (+++)	Fine dispersed particles in surroundings		
*7th	Shiny black with intense golden lustre (+++)	Fine dispersed particles in surroundings		

^{*}After

Table 2: Depicting results of Nirvapa

Process of Nirvapa	Quantity of Kwatha Used (ml)	Initial Wt. of Abhraka (g)	Final Wt. after <i>Nirvapa</i> (g)	Kwatha left (ml)	Time Taken to become red hot (min)	Remark on Gain/Loss of Abhraka
1 st	3000	1000	1080	2400	100	Gain due to absorption of Triphala.
2 nd	3200	1080	1214	2600	140	Weight increased due to <i>Triphala kwatha.</i>
3 rd	3200	1214	1509.2	1500	180	Gain due to more absorption of T <i>riphala,</i> moisture contain & rainy Season
4 th	3200	1509.2	1375	1100	100	Evaporation of absorbed

Vikas Kumar Baletiya et al. Pharmaceutical Preparation of Abhraka Bhasma

						Triphala.
5 th	3200	1375	1193.5	1300	90	Kwatha evaporated and particles dispersed in surrounding.
6 th	3200	1193.5	1290.6	1900	100	Kwatha evaporated, moisture contain & rainy Season
7 th	3300	1290	902	2400	110	Fine <i>Abhraka</i> particles dispersed in surrounding.

Table 3: Depicts yield of Shuddha Abhraka after purification

Sample Initial wt. (g)		Final wt. (g)	Loss/Gain (g)	Percentage Loss	
Abhraka	1000	902	Loss- 98	9.8 % loss	

Preparation of Kanji[8]

Purpose: For making Dhanyabhraka

S.No	Ingredients	Quantity
1.	Rajika	240 gm
2.	Saindhava lavana	480 gm
3.	Kulattha	480 gm
4.	Odana (cooked rice)	480 gm
5.	Haridra churna	120 gm
6.	Vamsha patra	120 gm
7.	Shunti	60 gm
8.	jeerak <mark>a</mark>	60 gm
9.	Hingu	5 gm
10.	Masha pishta	120 gm
11.	Sarshapa taila	120 ml
12.	Water	4800 ml

Once all the ingredients were prepared, a pre-treated pot-coated on the inside with *Sarshapa taila* (mustard oil)- was taken. Into this pot, 4800ml of water was added, followed by 960ml of *Kulattha kwatha* and 480gm of *Odana*. The fried *Masha chakrikas* and the fine powders of all remaining ingredients were then added and mixed thoroughly. The mouth of the pot was sealed tightly and left undisturbed to allow proper fermentation.

Table 4: Observations During Fermentation

Confirmatory tests	Day 0	Day 39
Color	Dull yellow	Dark yellow
Odor	Pungent	Strong
рН	7	3.5
Match stick test	Negative	Positive
Effervescence	Absent	present

Process of Dhanyabhraka[9]

Materials Used

obca									
S.No.	Ingredients Ratio		Quantity taken						
1.	Shuddha Abhraka	1 part	902 g						
2.	Dhana (Unhusked Rice Grain)	1/4 th part	226 g						
3.	Kanji	Q.S.	6 L						

Preparation of *Dhanyabhraka*: Purified *Abhraka* and one-fourth part *Dhanya* were placed in a jute pouch and immersed in fermented *Kanji* for 72 hours. Distilled water was then used to knead the pouch until the *Dhanyabhraka* was completely gone.

RESULT

Purified Abhraka (g)	aka (g) Dhanya (g) Kanji used		Yield of <i>Dhanyabhraka</i> (g)	% Loss
902	226	6	687	23.83%

Incineration of Abhraka

Method I [10]

The mixture of *Dhanyabhraka* (650g), *Guda* (650g), and adequate *Erand Patra Swarasa* and *Vata Patra* was processed using *Puta* (incineration) to purify it and enhance its therapeutic effectiveness.

Method II [11]

One-eighth of the quantity of *Abhraka* (*Guda*, or jaggery) and 591.5g of *Dhanyabhraka* were utilized in the preparation. Adequate amounts of *Erand Patra Swarasa* (leaf juice from *Ricinius communis*) and *Vata Patra* (leaves from *Ficus benghalensis*) were also administered as needed.

Table 5: Changes observed in Abhraka Bhasma after every Puta

After <i>Puta</i> No.	Colour	Appearance & Texture	Nischandra	Rekhapurna	Varitara	
1 st	Blackish red colour	Particles become fine than before, <i>Chakrika</i> becomes hard after <i>Puta</i> .	-ve	+	-ve	
$2^{ m nd}$	Blackish red colour	Particles become fine than before, <i>Chakrika</i> were soft than before	-ve	+	-ve	
3 rd	Blackish red colour	Chakrika were soft than before	-ve	+	-ve	
4 th	Blackish red colour	Same as above	-ve	+	-ve	
5 th	Blackish red colour	Same as above	-ve	+	-ve	
6 th	Blackish red colour	Same as above	-ve	+	-ve	
7^{th}	Color changes from black to brownish red color	Chakrika broke with some pressure, rough texture	+	+	-ve	
8 th	Color same as above	Chakrika broke with some pressure, smooth texture	+	+	-ve	
9th	Brownish red	Less hard, easy breakage, texture becomes slightly smooth	++	++	+ve, 30%	
10 th	Color same as above	Less hard, easy breakage, texture becomes slightly smooth	++	++	+ve	
11 th	Brownish red gradually increased	Same as above	++	++	+ve	
12 th	Brownish red gradually increased	Same as above	+++	++	+ve	
13 th	Dull red	Varitaratwa increases gradually after each Puta. Softness and colour was maintained.	+++	+++	+ve, 40%	

Vikas Kumar Baletiya *et al.* Pharmaceutical Preparation of Abhraka Bhasma

14 th	Dull red	Same as above	+++	+++	+ve
15^{th}	Dull red	Chakrika easy breaking with "Kat" sound, smooth texture.	+++++	+++	+ve, 60%

Table 6: Results of incineration of Abhraka

Puta No.	Swarasa	Guda	Abhraka Weight of material (g)			Puta	No. of	Max.	
	added (ml)	added	Before	Dried pellets	After <i>Puta</i>	levigation (h)	Methods	Cow dung cakes	Temp.
1 st	1150	650	650	1121	615.4	16	EMF	-	824°C
2 nd	650	615.4	615.4	1034	591.5	16	EMF		772°C
3 rd	450	74	591.5	635.1	586.3	16	Gajaputa	130	869°C
4th	450	73	586.3	620.3	582.9	16	Mahaputa	230	912°C
5 th	450	73	582.9	602.3	579.5	16	Mahaputa	250	967°C
6 th	450	72	579.5	598.3	577.3	16	Mahaputa	270	982°C
7 th	450	72	577.3	602.7	589.3	16	Mahaputa	260	957°C
8 th	450	74	589.3	596.3	584.7	16	Mahaputa	250	953°C
9th	450	73	584.7	596.8	582.6	16	Mahaputa	240	933°C
10 th	400	73	582.6	592.5	579.8	16	Mahaputa	240	947°C
11 th	400	73	579.8	598.7	573.5	16	Gajaputa	150	897°C
12 th	400	72	573.5	589.3	569.7	16	Gajaputa	165	934°C
13 th	350	71	569.7	586.7	563.2	14	Gajaputa	160	912°C
14 th	350	70	563.2	579.2	559.9	14	Gajaputa	160	924°C
15 th	350	70	559.9	572.2	554.3	14	Gajaputa	175	937°C

Note – weight of 10 cow dung cakes = 2.7 kg

Table 7: Average yield of Abhraka Bhasma after 15 Puta

Sample	Initial wt. (g)	Final wt. (g)	Loss (g)	Percentage Loss
Abhraka	650gm	554.2gm	95.8gm	14.738

Abhraka Bhasma Amritikarana^[12]

Abhraka Bhasma (10 parts), Go Ghrita (cow's ghee, 6 parts), and Triphala Kwatha (16 parts) are among the components. This preparation is based on the Bharjan (frying) principle.

Procedure

Each ingredient was accurately measured and mixed with ghee. The *Abhraka Bhasma* was then heated in a skillet, and the *Triphala* decoction was gradually added with continuous stirring. The mixture was cooked until the ghee was completely consumed and the decoction fully evaporated, leaving behind dry, blackened, and charred *Abhraka Bhasma*.

Table 8: Depicts the results of Amritikarana

Initial Wt. of <i>Abhraka</i> <i>Rhasma</i> (g)	Initial Wt. of Triphala Kwatha (ml)		Final Wt. of Obtained <i>Abhraka</i> <i>Bhasma</i> (g)	% Gain in weight (g)	Heating Time (hrs)
Ditasina (g)	1177 (1111)	(1111)	(8)		

Abhraka Bhasma Lohitikarana^[13]

The incineration (*Puta*) procedure was conducted using *Amritikrit Abhraka Bhasma* supplemented with 30gm each of *Rubia cordifolia* (*Manjistha*), *Vitex negundo* (*Nagabala*), *Cyperus rotundus* (*Musta*), *Curcuma longa*

(*Haridra*), and *Vetiveria zizanioides* (*Vata Mula*). Aqueous decoction was prepared using 1200ml of water and reduced to 300ml prior to incineration.

Table 10: Depicting results of Lomakarana								
Bhavana		Wt. of <i>Abhraka</i> (g)			Puta Methods	No. of Cow dung cakes	Max. Temp.	
<i>Kwatha</i> added (ml)	Duration (h)	Initial wt.	Wt. of dried pellets (g)	Final Wt. after <i>puta</i> (g)				
675	16	600	689.3	589	Gajaputa	155	903°C	
450	12	589	664.7	574	Gajaputa	180	917°C	
400	12	574	672.8	568	Gajaputa	190	929°C	
_	_	568		557	EMF	_	912°C	

Table 10: Depicting results of Lohitikarana

DISCUSSION

Traditional Grahva Lakshanas ensured authenticity of the raw mineral, while modern ICP-MS analysis confirmed high levels of iron, aluminium and magnesium key contributors to therapeutic activity without toxic heavy metals, validating safety[14]. Shodhana, or repeated quenching in Triphala Kwatha, resembles thermal shock and hydrothermal reactions. Rapid heating and cooling induce lattice stress, fragmentation, and removal of surface impurities[15], while Triphala phytochemicals including gallic acid, ellagic acid, quercetin, luteolin, saponins, and tannins act as natural chelators, binding and eliminating undesirable elements^[16]. *Dhanyabhraka*, is analogous to biochemical and microbial processes. The acidic medium and microbial activity facilitate ion leaching, while organic acids drive ion-exchange reactions and particle size reduction. This enhances solubility and bioavailability. similar modern to techniques^[17]. *Marana*. the repeated incineration process, parallels calcination in materials science. Successive *Puta* cycles induce oxidation, phase and reorganization, transitions. structural transforming crystalline mica into amorphous, bioassimilable oxides. Classical Siddhi Lakshanas, such as Rekhapurnatwa and Varitaratwa, reflect formation of submicron to nanoparticle-sized material^[18]. Amritikarana, acts as a surface coating with lipids and bioactive compounds, improving stability. compatibility, and therapeutic efficacy, akin to lipidconjugate systems in pharmaceutics[19]. Lohitikarana, imparting a reddish hue via herbal decoctions, introduces organic complexes and trace minerals, effects and enhancing Rasavana resembling nanoparticle functionalization^[20].

CONCLUSION

The *Abhraka Bhasma* preparation described in *Rasa Tarangini* is more appropriate than *Rasa Ratna Samuccaya*. Classical *Mahaputa* and *Gajaputa* methods for *Abhraka Bhasma* often suffer from uneven heating,

as in these methods the temperature remains above 900°C for only 10-15 minutes. In contrast, using an Electric Muffle Furnace (EMF) ensures uniform temperature control at 920°C for 30-45 minutes, achieving complete incineration. This produces a homogeneous *Bhasma* with consistent physicochemical properties and improved therapeutic reliability.

REFERENCES

- 1. Tripati Indradeva, (3rd ed.). Rasaratna samucchaya of Vagbhatacharya (translated with Rasaprabha Hindi commentary critical notes and introduction), Dwitiyoadhyaya: Chapter 2, Verse 14. Varanasi: Chaukambha Sanskrit Bhawan, 2006; 11.
- 2. Angadi R, A text book Rasasastra (Iatrochemistry and Ayurvedic pharmaceutics), Paribhasha prakarana (Significance Definitions): chapter 3, Varanasi: Chaukhamba Surbharati Prakashan, 2022; 24.
- 3. Angadi R, A text book Rasasastra (Iatrochemistry and Ayurvedic pharmaceutics), Paribhasha prakarana (Significance Definitions): chapter 3, Varanasi: Chaukhamba Surbharati Prakashan, 2022; 24.
- 4. Angadi R, A text book Rasasastra (Iatrochemistry and Ayurvedic pharmaceutics), Paribhasha prakarana (Significance Definitions): chapter 3, Varanasi: Chaukhamba Surbharati Prakashan, 2022; 24.
- Angadi R, (1st ed.). Transcendence English commentary on Rasatarangini of Shri Sadananda Sharma, Abhraka vijnaniya: chapter 10, Verse 16. Varanasi: Chaukhamba Surbharati Prakashan, 2015: 149
- 6. Monisha J, Tenzin T, Naresh A, Blessy BM, Krishnamurthy NB. Toxicity, mechanism and health effects of some heavy metals. Interdiscipl Toxicol 2014; 7(2):60e72.

- 7. Vagbhatacharya. Rasaratna Samuchchaya. Verse 2/16. Tripathi Indradev, editor. Varanasi: Chaukhambha Sanskrit Sansthan; 2012. 12 p.
- 8. Pandit Shyamsundaracharya. Rasayansar. 3rd edition, Vol. 1. Gayghat, Kashi: Rasayanshala; 1935. pp. 61–63.
- 9. Acharya Sri Madhava. Ayurveda Prakash. Verse 2/113-114 Shri Gulrajsharma Mishra, editor. Varanasi: Chaukhambha Bharati Academy; 2016 289 p.
- Vagbhatacharya. Rasaratna Samuchchaya with "vijnanabodhini" Hindi trans. And commentry. Verse 2/26 Prof. Dattatreya Anant Kulkarni, editor. New Delhi: Meharchand Lachmandas Publication; 2020 23 p.
- 11. Sharma Sadanand. Rasa Tarangini. Verse 10/46-48. Shastri Kashinath, editor. Motilal Banarasidas; 2014. 229-230 p.
- 12. Acharya Sri Madhava. Ayurveda Prakash. Verse 2/138 Shri Gulrajsharma Mishra, editor. Varanasi: Chaukhambha Bharati Academy; 2016 296 p.
- 13. Acharya Sri Madhava. Ayurveda Prakash. Verse 2/133-134 Shri Gulrajsharma Mishra, editor. Varanasi: Chaukhambha Bharati Academy; 2016 294-295 p.
- 14. Damireddy S, Kannadhasan R, Gummadi SB. Method development and validation for metal

- analysis of herbal drug (Abhrak Bhasma) using ICP-OES. NVEO Journal of Environment. 2022; (Special Issue): 5210.
- 15. Ilanchezhian et al. (2010) discuss the significance of media in Śodhana, highlighting how specific substances aid in the purification process.
- 16. Peterson et al., 2017. Phytochemical analysis of Triphala and its antioxidant/anti-inflammatory activities.
- 17. Kantak S, Rajurkar N, Adhyapak P, Jadhav S, Pawar V, Kulkarni R. Synthesis and characterization of Abhraka (mica) bhasma by two different methods. J Ayurveda Integr Med. 2019; 10(4): 265–74.
- 18. Varma AS, Bhat S, Nayak D. Analytical evaluation of Abhraka Bhasma samples after Marana, Amritikarana and Lohitikarana. Int J Ayur Pharma Res. 2024; 12(5): 21–7.
- 19. Varma AS, Bhat S, Nayak D. Analytical evaluation of Abhraka Bhasma samples after Marana, Amritikarana and Lohitikarana. Int J Ayur Pharma Res. 2024; 12(5): 21–7.
- 20. Varma AS, Bhat S, Nayak D. Analytical evaluation of Abhraka Bhasma samples after Marana, Amritikarana and Lohitikarana. Int J Ayur Pharma Res. 2024; 12(5): 21–7.

Cite this article as:

Vikas Kumar Baletiya, Govind Sahay Shukla, Rajaram Agarwal, Manisha Goyal, Ravi Pratap Singh. Pharmaceutical Preparation of Abhraka Bhasma: A Classical Approach Covering all Stages of Processing. AYUSHDHARA, 2025;12(4):20-27.

https://doi.org/10.47070/ayushdhara.v12i4.2238

Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence Dr. Vikas Kumar Baletiya

MD Scholar,

PG Dept. of Ras Shastra & Bhaishajya Kalpana,

Post Graduate Institute of Ayurveda, Dr. Sarvepalli Radhakrishnan

Rajasthan Ayurveda University, Jodhpur, Rajasthan.

Email: vikaskumarbaletia@gmail.com

Disclaimer: AYUSHDHARA is solely owned by Mahadev Publications - A non-profit publications, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. AYUSHDHARA cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of AYUSHDHARA editor or editorial board members.