

An International Journal of Research in AYUSH and Allied Systems

Review Article

THERAPEUTIC POTENTIAL OF *BRAHMYADI YOGA* IN THE MANAGEMENT OF ADHD: A COMPREHENSIVE REVIEW

Suman Rulaniya^{1*}, Rakesh Nagar², Vishal Nandlal Prajapati³

*¹PG Scholar, ²Professor, ³Assistant professor, Department of Kaumarbhritya, National Institute of Ayurveda, Jaipur, Rajasthan, India.

Article info

Article History:

Received: 14-08-2025 Accepted: 08-09-2025 Published: 30-09-2025

KEYWORDS:

Attention Deficit Hyperactivity Disorder (ADHD), Brahmyadi Yoga, Medhya Rasayana.

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood, characterised by inattention, impulsivity, and hyperactivity, which significantly affect academic, social, and emotional functioning. The etiology of ADHD is multifactorial, involving an interplay of neurobiological, environmental, and genetic determinants. If left untreated, ADHD can hampers learning ability, self-regulation, and behavioural development, leading to long-term challenges in adulthood. Ayurveda provides a comprehensive approach to such cognitive and behavioural disorders. Brahmyadi Yoga, a classical polyherbal formulation, contains Brahmi, Shankhapushpi, Vacha, Kushmanda with Kushta and Madhu which are well known for their Medhya Rasayana (nootropic and cognitive-enhancing) properties. Its bioactive phytoconstituents exert neuroprotective, adaptogenic, and nootropic effects, supporting brain plasticity, neurotransmitter modulation, and impulse regulation. By reducing hyperactivity, improving concentration, and enhancing cognitive functions, Brahmyadi Yoga offers a safe and holistic therapeutic option for managing ADHD in children.

INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental condition primarily characterized by persistent patterns of inattention, hyperactivity, and impulsivity. Based on the predominance of these symptoms, ADHD is classified into three subtypes: predominantly inattentive, predominantly hyperactive-impulsive, and combined type.^[1,2] Globally, the prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) is estimated at approximately 5.29%. However, rates vary widely across regions due to differences in diagnostic criteria, cultural awareness, and healthcare infrastructure. In India, reported prevalence ranges from 2% to 17%.[3] ADHD affects about 5-10% of children and 4-6% of adults. Boys are 2 to 4 times more likely to be diagnosed than girls[4].

https://doi.org/10.47070/avushdhara.v12i4.2251

Published by Mahadev Publications (Regd.) publication licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

The American Academy of **Paediatrics** recommends screening children aged 4 to 18 years for ADHD as part of routine paediatric care.[5] The etiology of ADHD is multifactorial, arising from a complex interaction of genetic susceptibility, neurobiological alterations, and environmental factors. Risk factors include perinatal complications, dietary patterns, stress, and exposure to psychosocial or environmental adversities.[6,7,8] Despite growing awareness, modern currently offers only psychiatry symptomatic management. Commonly prescribed medications, such as stimulants and non-stimulants, provide short-term control of hyperactivity and impulsivity but may be associated with side effects including behavioural rebound, disturbance, dry cognitive clouding, constipation, sedation, increased appetite, and subsequent weight gain. Furthermore, no definitive cure is available for the core deficits of attention and impulse regulation.[9]

In Ayurvedic classics, no condition exactly corresponds to ADHD. However, references to certain abnormal behaviours such as *Anavasthita Chittatva, Manovibhrama, Buddhivibhrama, Smritivibhrama, Sheelavibhrama, Cheshtavibhrama,* and

Acharavibhrama are scattered across the texts, which show resemblance to the features of ADHD. Although these terms are collectively described under *Unmada Vyadhi*, when considered individually, many of them closely parallel the clinical features of ADHD.^[10] For such disorders, Ayurveda advocates the use of *Medhya Rasayana* formulations that act as nootropics, cognitive enhancers, and mental stabilisers. Brahmyadi Yoga^[11] (*Bhaisajya Ratnavali, Unmada Rogaadhikar*) is a classical polyherbal formulation mentioned in Ayurvedic literature, consisting of *Brahmi (Bacopa monnieri)*, *Shankhapushpi (Convolvulus pluricaulis*),

Vacha (Acorus calamus), Kushmanda (Benincasa hispida), and Kushta (Saussurea lappa). It is traditionally indicated for improving memory, concentration, learning, and behavioural regulation in children. In this formulation, Kushta itself, along with Madhu (honey), is prescribed as Anupana, which potentiates the Medhya (nootropic) action of the formulation, enhances bioavailability, and supports better assimilation. Collectively, the formulation possesses neuroprotective, adaptogenic, and anxiolytic properties

Table 1: Classical Attributes of Brahmyadi Yoga Dravyas

Name	Latin name	Family	Part used	Rasa	Guna	Virya	Vipaka	Doshaghnata
Brahmi	Bacopa monnieri Linn.	Scrophularaceae	Whole plant	Tikta, Kashaya Madhura	Lagu, sara	Sita	Madhura	Vata-kapha Hara
Shankhpusphi	Convolvulus pluricaulis Linn.	Convolvulaceace	Whole plant	Tikta,Katu, Kashaya	Sara	Sita	Katu	Pita-kapha Hara
Vacha	Acorus calamus Linn.	Araceae	Rhizo me	Katu, Tikta	Laghu, Tiksna	Ușņa	Katu	Vata-kapha Hara
Kushmand	Benincasa hispida Linn.	Cucurbitaceae	Fruit	Madhura, Amla	Laghu	Sita	Madhura	Tridosahara
Kushtha	Saussurea lappa Linn.	Asteraceae	Root	Kaţu, Tikta	Laghu	Ușņa	Katu	Kapha-vata Hara

Table 2: Pharmacological Profile of Brahmyadi Yoga Dravyas

Name	Karma	Chemical constituents	Pharmacological properties		
Brahmi	Medhasakti vardhana ^[12] , Medhya, Rasayanam, Smriti Prada ^[13]	bacosides, dammarane-type triterpenoid saponins with jujubogenin or pseudo-jujubogenin aglycones. [14] Other active constituents include betulic acid, D-mannitol, stigmastanol, β -sitosterol, and stigmasterol. [15]	Antidepressant ^[16] , Anti- Spasmodic Activity ^[17] , Anxiolytic effect ^[18] , Memory enhancing effect ^[19]		
Shankh pusphi	Medhya, Rasayani, Smritida ^[20] , Nidrajanana,, ^[21]	Phenolics/Glycosides, Triterpenoid/Steroids, Scopoletin, B-sitosterol and ceryl alcohol [22], Shankhapushpine, convolamine, convoline, convolidine, convolvine, confoline, convosine.[23]	Antistress ^[24] ,Anxiolytic ^[25] ,Ant idepressant ^[26] , Brain nourishment ^[27]		
Vacha	Apasmara, Unmada , Smṛti daurbalya ^[28] , Medhya ^[29]	Volatile oil (principal constituent of volatile oil are Asamyl alcohol, asarone, eugenol), Acorin (Glucoside) and acolamone, acrenone, acoramone, tannin	Immunomodulatory ^[30] , neuroprotective ^[31] Antihypertensive ^[32] , Antidepressant ^[33]		
Kushma nd	Manasa Vikara ^[34] , <i>medhya</i> ^[35]	urea, saponin. ^[36] triterpenoids, flavonoids, glycosides, sterols (lupeol, β-sitosterol), vitamins, carotenoids. ^[37]	Enhances memory, intellect promoting activity [38]		
Kushtha	Rasayana ^[39]	Essential oil, alkaloid (saussurine) and bitter resin [40]	Anti-convulsant ^[41]		

RESULTS

The pharmacological studies confirm that the herbal components *Brahmi, Shankhapushpi, Vacha, Kushmand,* with *Kushtha* and *Madhu* exhibit significant neuroprotective, nootropic, and adaptogenic actions.

Clinical research on *Brahmi* with standardized extract (CDRI 08) reported improvements observed in inattention, memory, and behavioural control in children. The active bacosides act through modulation of cholinergic activity, antioxidant and neuroprotective effects, along with anxiolytic action, thereby enhancing cognition and emotional stability.^[42]

Shankhpushpi works on cognition by inhibiting acetylcholinesterase, thereby boosting acetylcholine levels to enhance learning and memory. Its antioxidant compounds protect neurons from oxidative stress and degeneration. It also improves synaptic plasticity, supporting memory formation and recall. Additionally, by regulating stress hormones and acting on GABA-A receptors, it reduces anxiety and promotes attention and concentration. [43]

Vacha (Acorus calamus) exerts significant cognitive benefits, with its memory-enhancing action primarily attributed to its role as a Medhya Rasayana. Its Ushna and Tikshna gunas promote Satva guna, which helps counteract Rajo and Tamo gunas responsible for memory deterioration. The *Ushna* Veerya (hot potency) of Vacha (Acorus calamus) is stimulate Sadhaka Pitta, which in turn enhances higher mental faculties such as *Buddhi* (intellect). *Medha* (cognitive capacity), and Smriti (memory). Additionally, its *Sukshma* and *Vishada* properties act as Srotoshodhaka, clearing the subtle channels of the brain to enhance cognitive processing. Together, these actions improve concentration, recollection, and overall memory function in children.[44]

Methanolic extract of Kushmand fruit exhibited strong anti-depressant-like effects in mice, comparable to fluoxetine and imipramine. Behavioural tests showed that it significantly reduced immobility without affecting locomotor activity. The effect was through dopaminergic, serotonergic, noradrenergic, and GABAergic pathways. Additionally, the extract elevated monoamine levels by inhibiting brain monoamine oxidase-A (MAO-A).[45] Kushtha enhances cognition by inhibiting acetylcholinesterase (AChE), thereby increasing acetylcholine levels and improving learning and memory. It mitigates oxidative stress by elevating catalase activity and reducing lipid peroxidation (TBARS), thus protecting neurons from ROS-induced damage. The extract also neuroprotective effects by reducing hippocampal neuronal necrosis and enhancing long-term potentiation. Bioactive constituents such

costunolide and lupeol contribute to its antioxidant, neuroprotective, and nootropic properties.^[46]

Preliminary clinical observations on composite *Brahmyadi Yoga* formulations suggest symptomatic improvement in ADHD, with reduction of hyperactivity, impulsivity, and inattentiveness. The formulation was found to enhance concentration, memory, and behaviour regulation without significant adverse effects. The cumulative action of these herbs aligns with the Ayurvedic classification of *Medhya Rasayanas*, indicating that *Brahmyadi Yoga* can be safely considered as a supportive intervention in ADHD.

However, the available studies remain limited in number and scale. Larger randomized controlled trials are necessary to validate efficacy, optimize dosing schedules, and confirm long-term safety in children

DISCUSSION

Probable mode of action of the drugs

Tikta Rasa is dominated by Vavu and Akasha Mahabhuta. These elements help clear Srotorodha by reducing Kapha, thereby lowering Tama Guna and enhancing Sattva Guna. Kashaya Rasa, composed of Vayu and Prithvi Mahabhuta, possesses Sthira Guna, which provides stability in conditions of hyperactivity and impulsivity. Laghu Guna, inherent in Vata, reduces Tama and strengthens Sattva. Its Deepana property stimulates Agni, as Mandagni weakens Satva, Raja, and Tama. Katu Vipaka, by enhancing Vata, aids in eliminating aggravated Kapha the root cause of inattention. Most of these medicines are Vata-kapha Hara balancing Vata-kapha Doshas and thereby stabilizing Sattva Guna. Ushna Veerya reduces Kapha, leading to the pacification of Raja and Tama, while Madhura Vipaka imparts Sthira Guna, calming restlessness children. Additionally. formulations are Medhya in nature, exhibiting nootropic properties that enhance cognition, memory, reasoning, and other intellectual abilities. [47]

Brahmyadi Yoga contains Brahmi (Bacopa monnieri), Shankhapushpi (Convolvulus pluricaulis), Vacha (Acorus calamus), Kushmand (Benincasa hispida), Kushtha (Saussurea lappa) and Madhu. These constituents are categorized as Medhya Rasayanas (nootropic and neurotonic agents) in Ayurveda and are traditionally indicated for cognitive enhancement, mental stability, and management of Manasika Vikaras such as Unmada, which shares clinical features with ADHD. From a pharmacological perspective, the formulation demonstrates multifactorial neurocognitive benefits. Brahmi (CDRI-08) has been clinically shown to improve inattention, memory, and

behavioural control through cholinergic modulation and neuroprotective mechanisms. Shankhapushpi and Vacha, as Medhya Rasayanas, enhance learning, concentration, and bv memory inhibiting acetylcholinesterase, promoting Satva, and clearing neural channels (Srotoshodhana). Kushmanda exerts anxiolytic and antidepressant-like effects monoaminergic and GABAergic pathways, while *Kushtha* provides additional neuroprotective and nootropic actions through antioxidant and anti-lipid peroxidation mechanisms. Collectively. pharmacological and Ayurvedic actions align with the pathophysiological targets of ADHD, including neurotransmitter dysregulation, oxidative stress, and impaired cognitive processing. Preliminary studies and traditional evidence suggest that Brahmvadi Yoga improves attention span, memory, and emotional stability while reducing hyperactivity and impulsivity, with a favourable safety profile compared to conventional pharmacotherapy. However, clinical validation remains limited, necessitating well-designed randomized controlled trials to confirm its efficacy. standardize dosing, and assess long-term safety in paediatric populations. Thus, integrating Brahmyadi Yoga with conventional approaches may provide a holistic, multi-targeted, and safer strategy for the comprehensive management of ADHD."

CONCLUSION

From the compiled information from various Ayurvedic texts and published research regarding Brahmyadi Yoga, it may be inferred that this formulation is safe to use in children. It plays an important role in improving cognition, attention, memory, and behavioural regulation in ADHD. The combined action of its Medhya Rasayana herbs Brahmi, Shankhapushpi, Vacha, Kushmand, and Kushtha may be responsible for the neurocognitive and adaptogenic effects claimed for Brahmyadi Yoga. However, to draw a concrete conclusion, further research should be carried out to establish standardized dosage, treatment duration, and long-term safety. Rigorous clinical trials are required to assess its efficacy in reducing ADHD symptoms and to compare the outcomes of children managed with Brahmyadi Yoga and those without this intervention.

REFERENCES

- 1. Ragamala KS, Dash PK. Effect of Takradhara in children with attention deficit hyperactivity disorder (ADHD). International Journal of Ayurvedic Medicine. 2017; 8(4): 182-6.
- 2. Núñez-Jaramillo L, Herrera-Solís A, Herrera-Morales WV. ADHD: Reviewing the causes and evaluating solutions. Journal of personalized medicine. 2021 Mar 1; 11(3): 166.

- 3. Fagne MS, Thakre T, Bhaskaran JK. Role of Ayurveda in Attention Deficit Hyperactive Disorder (ADHD) A Case Study. Journal of Research in Traditional Medicine. 2020 Jul 7; 4(5): 128.
- 4. National Institute of Mental Health. NIMH Research on Treatment for Attention Deficit Hyperactivity Disorder (AD/HD): The Multimodal Treatment Study-Questions and Answers. 2000 [Google Scholar]
- 5. Faraone, S. V., Banaschewski, T., Coghill, D., Zheng, Y., Biederman, J., Bellgrove, M. A. Wang, Y. (2021). The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder. Neuroscience & Biobehavioural Reviews. doi:10.1016/j.neubiorev.2021.01.022
- 6. Kian N, Samieefar N, Rezaei N. Prenatal risk factors and genetic causes of ADHD in children. World J Pediatr. 2022 May; 18(5): 308-319. doi: 10.1007/s12519-022-00524-6. Epub 2022 Mar 2. PMID: 35235183.
- 7. Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Developmental Psychobiology. 2024 Dec; 66(8): e70004.
- 8. Rattay K, Robinson LR. Identifying Risk Factors for Attention-Deficit/Hyperactivity Disorder (ADHD): a Public Health Concern and Opportunity. Prev Sci. 2024 May; 25(Suppl 2): 195-202. doi: 10.1007/s11121- 024-01667-w. Epub 2024 Apr 10. PMID: 38598041; PMCID: PMC11315233.
- Bhalerao, Supriya; Munshi, Renuka; Nesari, Tanuja1; Shah, Heenal2. Evaluation of Brāhmī ghrtam in children suffering from Attention Deficit Hyperactivity Disorder. Ancient Science of Life 33(2): p 123-130, Oct-Dec 2013. | DOI: 10.4103/0257-7941.139057
- 10. Akshay Gurav, Jennifer D'souza. A Case Report on Ayurvedic Management of Attention Deficit Hyperactivity Disorder [ADHD] in Children. J Ayurveda Integr Med Sci [Internet]. 2022 Jul.16 [cited 2025 Sep.1]; 7(5): 166-170. Available from: https://jaims.in/jaims/article/view/1914
- 11. Bhaisajya Ratnavali Dr. Siddhi Nandan Mishra first part, Chapter number 24, page no .500
- 12. Dravyaguna vijnana vol 2 (vegetable Drugs) by Prof P.V. Sharma, published by Chaukhamba Bharti Academy Varanasi. Edition reprint year 2011, page no. 07
- 13. Madanpala Nighantu Prof. Gyanendra pandeya, chaukhamba Orientalia Edition, 2012, Pg. No. 211.

- 14. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation research. 2013 Aug 1; 16(4): 313-26.
- 15. Chatterji, N. and Rastogi, R. P. and Dhar, M. L., 19640301293, English, Journal article, 1, Indian Journal of Chemistry, (212–15), Chemical examination of Bacopa monniera Wettst.: Part I-Isolation of chemical constituents., (1963)
- 16. Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine. 2002 Apr; 9(3): 207-11. Doi: 10.1078/0944-7113-00116. PMID: 12046860.
- 17. Ganguly DK, Malhotra CL. Some behavioural effects of an active fraction from Herpestis monniera, Linn. (Brahmi). Indian J Med Res. 1967 May; 55(5): 473-82. PMID: 6065425.
- 18. Singh HK, Dhawan BN. Drugs affecting learning and memory. Lectures in neurobiology. 1992; 1: 189-207.
- 19. Singh HK, Dhawan BN. Neuropsycho pharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Indian Journal of Pharmacology. 1997 Sep 1: 29(5): 359
- 20. Madanpala Nighantu Prof. Gyanendra Pandeya, chaukhamba Orientalia Edition 2012 Pg. No. 196.
- 21. Dravyaguna vijnana vol 2 (vegetable Drugs) by Prof P.V. Sharma, published by Chaukhamba Bharti Academy Varanasi. Edition reprint year 2011 page no 09
- 22. 22Prasad GC, Gupta RC, Srivastava DN, Tandon AK, Wahi RS, Udupa KN. Effect of Shankhpushpi on experimental stress. J Res Indian Med. 1974; 9(2): 19-27.
- 23. Agarwa P, Sharma B, Fatima A, Jain SK. An update on Ayurvedic herb Convolvulus pluricaulis Choisy. Asian Pacific journal of tropical biomedicine. 2014 Mar 1; 4(3): 245-52.
- 24. Barar FS, Sharma VN. Preliminary pharmacological studies on Convolvulus pluricaulis chois-A Indian indigenous herb. Indian J Physiol Pharmacol 1965; 9: 99-102
- 25. Singh GK, Bhandari A. Text book of pharmacognosy. New Delhi: CBS Publishers, 2000. p. 193-194, 44. Razzakov NA, Aripova SF. Confolidine, a new alkaloid from the aerial part of Convolvulus subhirsutus. Chem Nat Comp 2004; 40: 54-5
- 26. Amin H, Vyas HA. Vyas MK. Philosophical and applied Ayurvedic aspects of Mana w.s.r. to Smriti. M.D. dissertation. L.P.G.T and R.A. Jamnagar, 2012.

- 27. Mudgal V. Studies on medicinal properties of Convolvulus pluricaulis and Boerhaavia diffusa. Planta Med 1975, 28:62-8.
- 28. The Ayurveda Pharmacopeia of India, Part 1, Vol.2, Govt of India, Department of AYUSH, Page no. 179.
- 29. The Ayurveda Pharmacopeia of India, Part 1, Vol.2, Govt of India, Department of AYUSH, Page no. 179.
- 30. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine. 2014 Feb 15; 21(3): 268-76. doi: 10.1016/j.phymed.2013.09.020. Epub 2013 Nov 4. PMID: 24200497.
- 31. Malik R, Kalra S, Singh G, Gahlot V, Kajal A. Antioxidative And neuroprotective potential of Acorus calamus Linn. And Cordia dichotoma G. Forst. In Alzheimer's type dementia in rodent. Brain Research. 2024 Jan 1; 1822: 148616.
- 32. Singh, D.K.; Kumar, N.; Sachan, A.; Lakhani, P.; Tutu, S.; Shankar, P.; Dixit, R.K. An experimental study to see the antihypertensive effects of gymnema sylvestre and acorus calamus in wistar rats and its comparison with amlodipine. Asian J. Med. Sci. 2017, 8, 11–15. [CrossRef]
- 33. Pawar, V.S.; Anup, A.; Shrikrishna, B.; Shivakumar, H. Antidepressant-like effects of Acorus calamus in forced swimming and tail suspension test in mice. Asian Pac. J. Trop. Biomed. 2011, 1, S17–S19. [CrossRef]
- 34. The Ayurveda Pharmacopeia of India, Part 1. Vol.4, First Edition Govt of India Department of AYUSH, Page no. 55-56
 - 35. Sarma P. Dravya guna vijnana. Caukhamba Vidya Bhavana; 1955.
 - 36. Manoj S. Pagare, Leena Patil, Vilasrao J. Kadam. Benincasa hispida: A Natural medicine. Research J. Pharm. and Tech. 4(12): Dec. 2011; Page 1941-1944.
 - 37. Nadkarni A. K., Indian Materia Medica. Papular Prakashan. Bombay, India 1976, p. 185-6.
 - 38. 10. Singh RH. Panchakarma therapy. Varanasi: Chaukhambha Publication; 1992. [Google Scholar]
 - 39. Chaudhuri K, Samarakoon SM, Chandola HM, Rajesh K, Ravishankar B. Clinical Evaluation of Medhyarasayana Ghrita along with Vachadi Ghrita Nasya (Pratimarsha) on Senile Dementia.
 - 40. The Ayurveda Pharmacopeia of India, Part 1. Vol.1, First Edition Govt of India Department of AYUSH, Page no. 76-77
 - 41. Hassan R, Masoodi MH. Saussurea lappa: A comprehensive review on its pharmacological

- activity and phytochemistry. Current traditional medicine. 2020 Mar 1; 6(1): 13-23.
- 42. Kean JD, Kaufman J, Lomas J, Goh A, White D, Simpson D, Scholey A, Singh H, Sarris J, Zangara A, Stough C. A randomized controlled trial investigating the effects of a special extract of Bacopa monnieri (CDRI 08) on hyperactivity and inattention in male children and adolescents: BACHI study protocol (ANZCTRN12612000827831). Nutrients. 2015 Dec 2; 7(12): 9931-45.
- 43. Alzheimer's Drug Discovery Foundation. Shankhpushpi – Cognitive Vitality for Researchers. Cognitive Vitality Reports. 2020 Jun 30. Available from: https://www.alzdiscovery.org
- 44. Shreedevi Huddar, Elleri Anup Kumar. Clinical Evaluation of Vacha Rhizome (Acorus Calamus Linn) as Memory Booster in Children. Ayushdhara

- [Internet]. 2023 Nov.5 [cited 2025 Aug.3]; 10(5): 66-71. Available from: https://ayushdhara.in/index.php/ayushdhara/art icle/view/1358
- 45. Dhingra D, Joshi P. Antidepressant-like activity of Benincasa hispida fruits in mice: Possible involvement of monoaminergic and GABAergic systems. Journal of Pharmacology and Pharmacotherapeutics. 2012 Mar; 3(1): 60-2.
- 46. Sadia, Humera & Evaluation of Saussurea lappa on Oxidative Stress and Cognition in Aluminium-induced Alzheimer's Disease Rats. Journal of Natural Remedies. 2015-2025. 10.18311/jnr/2024/43482.
- 47. Shastry K, Chaturvedi G. Charaka Samhita. Vidyotini. Hindi commentary Part 1 sutrastha. 1996 Varanasi Chaukhambha Bharati Academy: 502-03

Cite this article as:

Suman Rulaniya, Rakesh Nagar, Vishal Nandlal Prajapati. Therapeutic Potential of Brahmyadi Yoga in the Management of ADHD: A Comprehensive Review. AYUSHDHARA, 2025;12(4):178-183.

https://doi.org/10.47070/ayushdhara.v12i4.2251

Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence Dr. Suman Rulaniya

PG Scholar,

Department of Kaumarbhritya National Institute of Ayurveda, Jaipur, Rajasthan.

Email: sumanrulaniya97@gmail.com

Disclaimer: AYUSHDHARA is solely owned by Mahadev Publications - A non-profit publications, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. AYUSHDHARA cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of AYUSHDHARA editor or editorial board members.