

An International Journal of Research in AYUSH and Allied Systems

Research Article

X-RAY FLUORESCENCE (XRF) ANALYSIS OF *ASHODHITA* AND *SHODHITA HARATAL* Bhogan Madhuri^{1*}, Sathe Ninad²

*1PG Scholar, ²Professor, Dept. of Rasashastra and Bhaishajya Kalpana, Dr.G.D.Pol Foundation's Y.M.T Ayurvedic Medical College and Hospital, Kharghar, Navi Mumbai.

KEYWORDS: Haratal, Shodhan, Swedana, Churnodaka, Ashudha, XRF.

*Address for correspondence

111/3705, S.G.Barwe Marg,

madhuribhogan@gmail.com

Nehrunagar, Kurla (East).

Phone no: 9821209736

Dr.Bhogan Madhuri

Mumbai 400024.

Email

ABSTRACT

In our classical texts, we find that Shodhan is defined as a process through which we attempt to remove impurities that may be present in any material of herbal or mineral origin. *Haratal* has been placed among the Uprasavarga, & along with Manashila & Sankhiya forms the Mallavarga. All these are highly toxic unless Shodhan is done. Haratal shodhan in our texts has been mentioned by subjecting it to Swedana in Dola yantra. The liquid medium being any, from the following i.e. Kushmandaswarasa, Churnodak, Triphalakwathnimbuswarasa etc., with the duration ranging from 1-2 *Prahar* (3 to 6 hrs). In the following study, Ashudha haratal was subjected to Swedana in Churnodaka for 2 Prahar, *i.e.*, for 6 hr. Samples were collected of *Ashudha haratal*, *Shudha haratal*, and the Churnodaka left after completion of Swedan. XRF analysis of Shudha and Ashudha haratal show that elements like iron were completely removed or in case of antimony and silicon reduction, was noted. While traces of elements like iron, arsenic etc were noted in the XRF analysis of the Churnodaka that was collected after the Shodhan procedure. Since Haratal can be used in medicine/formulation after its purification, the current study has been undertaken to study the process of its purification (Shodhan).

INTRODUCTION

Shodhan is defined as the process by which we remove the impurities from any herbal or mineral material.^[1] There are many ways to achieve this i.e. by Bharjana, Swedansanskar, Nirvapan etc. Some of the minerals in our texts have been mentioned which are purified by Swedana in Dola *yantra*. Only after the completion of this process we can use the minerals orally in proper dosage or use it as an ingredient for formulating other medicines. In case of Haratal, for formulating Rasamanikya, Samirpannag rasa, etc. Haratal (As₂S₃) also known as yellow orpiment is one of the toxic minerals mentioned in the classical texts. Taking it in its impure form causes decreases lifespan, Vata & Kaphaprakopajanyavaydhi, Prameha, Santapa, Daha, Sphota, etc.^[2,3] In Rasatarangini, Shodhan of haratal has been mentioned to be done in *Churnodaka* by *Swedana* in *Dola yantra*.^[4,5]

Aim & Objective

Aim

Study of *Shodhan* process of *Haratal* in *Churnodaka*. **Objectives**

- 1) To analyse *Churnodaka* left after *Shodhan* process by XRF.
- 2) To analyse *Ashudha* and *Shudha haratal* by XRF.

Material & Method

Ingredients

Ashudha haratal Chuna and lime Water

Instruments and Equipments

S.S Vessel Measuring cylinder Cotton Cloth Stove Tongs Stick/rod Weighing machine *Khalva yantra*

Method

- In *Rasatarangini*, the ratio of lime to water is mentioned as 2 *Ratti* of lime to 5 *Tola* of water.
 25 g of lime was added to 6 L of water and kept undisturbed for 24 hrs. Thus, *Churnodaka* was made.^[6,7]
- 2) This was filtered through a cloth next day and used.
- 3) A coarse powder was made of *Ashudha haratal* and it was tied in a *Pottali*.
- 4) This *Pottali* was tied on to a stick/rod and suspended in a SS vessel, *Churnodaka* was

added to this and filled to a level that the *Pottali* was submerged.

- 5) The SS vessel was kept on low flame for 6 hrs as mentioned in *Rasatarangini*.
- 6) Once the 6 hrs of *Swedan* were completed the *Pottali* was removed and the *Churnodaka* left behind was collected and was subjected for XRF analysis.
- 7) The *Shudha haratal* was then washed with lukewarm water and dried.

Results

Fig 1: Schematic Representation of Haratal Shodhan

Time	Temperature SHDHA		
11:00	29ºC		
11:23	92.5ºC	Started boiling with fumes	
12:30	88.9ºC	Fumes present	
13:26	87.3ºC	Fumes present	
14:20	92.7ºC	Fumes present	
15:15	96.8ºC	Fumes present	
16:20	93.5ºC	Fumes present	
17:15	98.8ºC	Fumes present	
Table 2: Dhysical parameters			

Table 1: Temperature chart

Table 2: Physical parameters			
Ashudha haratal	ratal Shudha haratal		
Bright orange yellow	Golden Yellow		
100g	82g		
Luster Present Reduced			
	Ashudha haratal Bright orange yellow 100g		

Analytical study

The analytical study was conducted Y.M.T Ayurvedic Medical College and Hospital, Kharghar, Navi Mumbai 410210. The XRF Analysis for *Haratal* before and after *Shodhan* was conducted at Varsha Bullion, Kalbadevi, Mumbai, whereas the XRF analysis of *Churnodaka* was conducted at *Shraddha* Analytical Services, Ghatkopar, Mumbai.

AYUSHDHARA | January - February 2018 | Vol 5 | Issue 1

AYUSHDHARA, 2018;5(1): 1490-1495

Table 3: Analytical study			
	Ashudha haratal	Shudha haratal	
pH [Electrode method]	7.52	8.04	
L.O. D	4.031%	0.3%	
Total Ash	6.82%	4.01%	
Acid Insoluble Ash	5.38	3.18	

Table 4: pH value

Churnodaka	Before Shodhan	After Shodhan
pH [Electrode method]	12.09	11.26

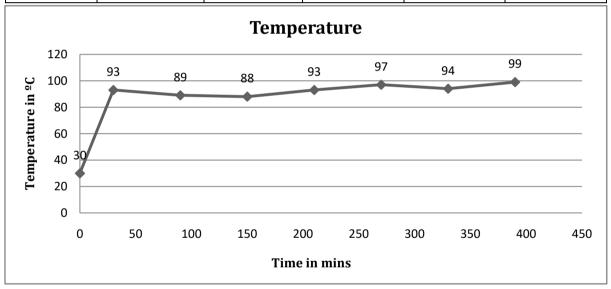
Solubility Test [8]

Asudhaharatal was taken in a beaker and added to the chemicals mentioned in Table 5, it was shaken well & heated. Solubility was observed on the basis of clarity of mixture.

Table 5: Solubility test			
Chemical	Ashudha Haratal	Shudha Haratal	
Distilled water	Not soluble	Partially soluble	
Conc. H ₂ SO ₄	Not soluble	Partially soluble	
Conc.HCl	Not soluble	Partially soluble	
Methanol	Not soluble	Partially soluble	
Ethanol	Not soluble	Partially soluble	

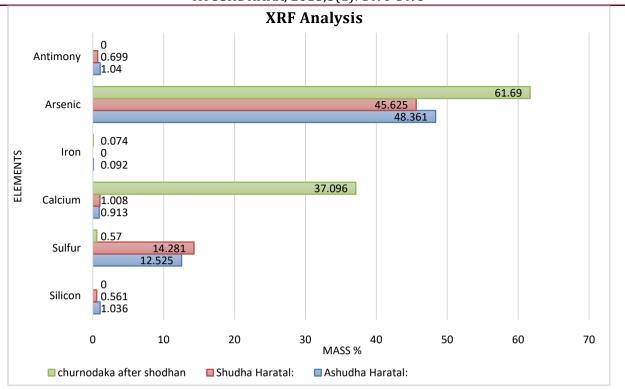
Fig 2: Solubility Test Table 6: XRF Analysis: Element concentration in %

Ashudha Haratal	Mass%	Shudha Haratal	Mass%
Silicon	1.036	Silicon	0.561
Sulfur	12.525	Sulfur	14.281
Calcium	0.913	Calcium	1.008
Iron	0.092	Iron	-
Arsenic	48.361	Arsenic	45.625
Antimony	1.040	Antimony	0.699
Oxygen	36.033	Oxygen	37.243
		Phosphorous	0.000

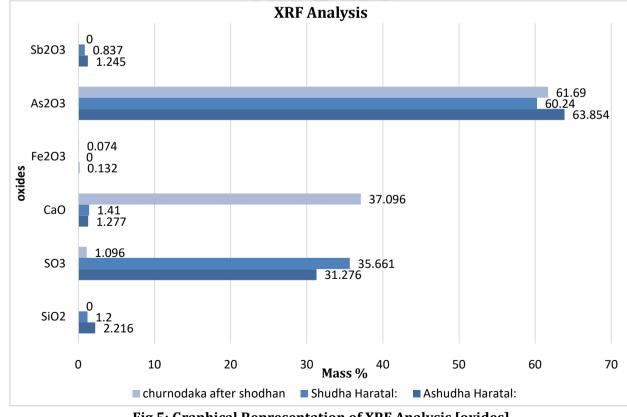

AYUSHDHARA | January - February 2018 | Vol 5 | Issue 1

Bhogan Madhuri, Sathe Ninad. X-Ray Fluorescence (XRF) Analysis of Ashodhita and Shodhita Haratal

Table 7: Oxides concentration in %			
Ashudha Haratal	Mass%	Shudha Haratal	Mass%
SiO2	2.216	SiO2	1.200
S03	31.276	P205	0.000
CaO	1.277	SO3	35.661
Fe2O3	0.132	CaO	1.410
As203	63.854	As203	60.240
Sb203	1.245	Sb203	0.837


Table 8: Churnodaka After Shodhan

Elements	Mass%	Oxides	Mass%		Mass%
Sulfur	0.57	Sulfur	0.439	SO3	1.096
Calcium	34.90	Calcium	26.512	CaO	37.096
Iron	0.07	Iron	0.052	Fe2O3	0.074
Copper	0.05	Copper	0.035	CuO	0.044
Arsenic	64.42	Arsenic	46.723	As203	61.690
		Oxygen	26.239		



The pH of *Ashudha haratal* was 7.52 whereas that of *Shodhitharatal* was 8.04, also there was difference in the pH of *Churnodaka* used, before *Shodhan* it was 12.09 while after *Shodhan* it was 11.26. This shows that there was increase in alkalinity of *Haratal* after purification. The L.O.D and Total Ash of *Shudha haratal* was less than that of *Ashudha haratal*, whereas the Acid Insoluble Ash was increased for *Shudha haratal*. As total ash indicates the amount of inorganic residue left behind, we can see that inorganic matter is reduced in the *Shudha haratal* sample. The solubilty tests showed that *Shudha haratal* is partially soluble in chemicals.

XRF analysis of *Ashudha haratal* and *Shudha haratal* shows that sulfur content had increased whereas arsenic was reduced. Also, we can see that iron was completely eliminated from *Shudha haratal* while there are traces of it in the *Churnodaka* sample. The other elements that we found reduced in the *Shudha haratal* were antimony and silicon, while calcium content was slightly increased. From the XRF analysis of the *Churnodaka* which was collected after *Shodhan*, we can see the presence of sulfur and arsenic [fig 4]. Observing the XRF reports, we can verify that *Shodhan* does remove impurities i.e. *Mala-vichitaye*.

CONCLUSION

Physically the *Ashudha haratal* appears to be shinier than the *Shudha haratal*. From the initial weight of 100 g the *Shodhita haratal* weighed 82g. Therefore 18% loss in *Haratal* after the purification was evident. From the temperature chart, we can see that the temperature did not exceed 100°C [fig3]. There were continuous fumes of sulphur once the *Churnodaka* started boiling.

Our ancient text advocates that Shodhan of any drug should be done before its use as an ingredient in any formulation. Shodhan process eliminates all the impurities and foreign matter that is unwanted. Through the analysis of Churnodaka after the *Shodhan* of *Haratal* it can be seen that it contained traces of iron, copper etc. study conducted bv Dr.Mishra. S.Shanker et al. comparative toxicity study on impure *Haratal*, pure Haratal and Rasamanikya, show no pathological changes, Shodhan reduces the toxicity of Haratal, also stating that detoxified *Hartal* and *Rasamanikya* are safe and least toxic to kidney. It makes Haratal suitable for better absorption without causing the epithelial cells damage of GIT.^[9]

Further study on the various *Shodhan* process described by our *Acharyas* can be done to distinguish which *Shodhan* media gives better result using advanced analytical techniques. Since bioavailability of herbal drugs is decreasing day-by-day, use of metals, minerals etc is a great avenue for treating diseases. Therefore, we need to establish some of our basic concepts to satisfy the contemporary science and the general population. More can be done in this subject with the help of integrative approach in understanding our science.

REFERENCES

- 1. Pranacharya Shrisadanandasharmana Virachita, Rasatarangini, 11th Edition, Varanasi, Motilal Banarasidas Publication, 2014, Pg. No 22, verse 52.
- 2. Shri Vaghbhacharya Virachit, Rasaratna samuchay, "Sidhiprada" Hindi Vyakhyata, First Edition, Varanasi, Choukhamba Orientalia Publication, 2011, Pg. No75, verse 76.
- 3. Pranacharya Shrisadanandasharmana Virachita, Rasatarangini,11thEdition, Varanasi, Motilal Banarasidas Publication, 2014,Pg. No 146, verse 13-14.
- 4. Pranacharya Shrisadanandasharmana Virachita, Rasatarangini,11th Edition, Varanasi, Motilal Banarasidas Publication, 2014, Pg. No 247, verse 20.
- 5. The Ayurvedic Pharmacopeia of India, First Edition, Part 2 volume 2, Appendices-6, Pg.No 279.
- Pranacharya Shrisadanandasharmana Virachita, Rasatarangini, 11thEdition, Varanasi, Motilal Banarasidas Publication, 2014, Pg. No 280, verse 216-218.
- 7. The Ayurvedic Pharmacopeia of India, First Edition, Part 2 volume 2, Appendices-6, Pg No 275.
- 8. Desai D. Comparative Study of Hartal Satwa Prepared by Two Different Methods and Their Physicochemical Analysis(Doctoral dissertation), 2010, Pg. no 95.
- 9. Dr.Shanker S. Mishra, Mr.Kumud Kant Awasthi, Dr.Inderpal Soni, Dr. V. K. Gothecha, Comparative Subacute Toxicity Study of An Ayurvedic Formulation Hartal (Orpiment) And Rasa Manikya (Processed Product of Hartal) In Albino Mice, International Journal of Pharmacy & Pharmaceutical Research,2017,Vol: 8 Issue: 3.

Cite this article as:

Bhogan Madhuri, Sathe Ninad. X-Ray Fluorescence (XRF) Analysis of Ashodhita and Shodhita Haratal. AYUSHDHARA, 2018;5(1): 1490-1495.

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: AYUSHDHARA is solely owned by Mahadev Publications - A non-profit publications, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. AYUSHDHARA cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of AYUSHDHARA editor or editorial board members.