EFFICACY OF PRISHNAPARNI-BALA-VASA KWATHA IN GARBHAVASTHA JANYA SHOPHA
Shubha M1*, Sunita Siddesh2
1M. S. Scholar, 2Reader & H.O.D, Dept of Prasooti Tantra & Stree Roga, Sri Kalabyraveshwara Ayurvedic Medical College, Hospital & Research Center, Bangalore 560 104, Karnataka, India.

ABSTRACT
Many signs and symptoms produced during pregnancy are caused due to the anatomical and physiological changes in mother and maternal adaptation to these changes. One such symptom which appears physiologically during pregnancy is “Garbhavastha Janya Pada Shopha”. The incidence of oedema in normal healthy pregnant women is reported to be 50-80%. If Pada shopha is ignored and not treated then it acts as a precursor and predisposes to the development of deep-vein thrombosis. Hence emphasis is given for pedal oedema during pregnancy in this study. Early detection and appropriate treatment is the need of the hour to reduce the Pada Shopha and to overcome the complications underlying the Pada Shopha. In Yoga Rathnakara specific treatment for Garbhavastha Janya Shopha is advocated with Prishnaparni-Bala-Vasa Kwatha.

Dose: 16 ml thrice daily orally. Follow up: On 22nd and 29th day.

Results: Statistically significant results was seen, for location t=11.0886 and p= <0.0001, circumference at forefoot in right & left leg was t= 8.8039 and p= <0.0001 & at ankle joint in right and left leg was t=6.0990 and p= <0.0001, on bilateral/unilateral oedema was t=8.9303 and p= <0.0001, on pitting a t forefoot, ankle in right and left leg was t= 7.8831 and p= <0.0001, time of aggravation was t= 8.6509 and p= <0.0001.

Conclusion: Hence it can be concluded that Prishnaparni-Bala-Vasa Kwatha is effective in treating non-pathological mild to moderate Garbhavastha Janya Shopha.

INTRODUCTION
Ayurveda has stressed on ‘Swasthasya Swashta Rakshana, aturasya vikara prashamanam cha’ as the first and foremost objective, i.e., maintaining the health of a healthy and alleviating the disorders in the diseased. Even in modern medicine Harrison’s quote’s that “The task of Medicine is to preserve and restore health and to relieve sufferings” and this is the prime objective and base for the present study.

Many signs and symptoms produced during pregnancy are caused due to the anatomical and physiological changes in mother and maternal adaptation to these changes. These symptoms though physiological can sometimes get aggravated causing diseases, or sometimes worsen a pre-existing disease.

Hence, an effective formulation in Ayurveda which is devoid of adverse affect, to overcome these problems will be of immense help to the pregnant women and needless to say for preservation of the health of foetus.

One such symptom which appears physiologically during pregnancy is “Garbhavastha Janya Shopha”. The incidence of
oedema in normal healthy pregnant women is reported to be 50-80%. If Pada shopha is ignored and not treated then it acts as a precursor and predisposes to the development of deep-vein thrombosis. Hence emphasis is given for oedema in legs in this study.

Early detection and appropriate treatment is the need of the hour to reduce the Padashopha and to overcome the complications underlying the Padashopha.

In Yoga Rathnakara specific treatment for Garbhavastha Janya Shopha is advocated with Prishna Parni-Bala-Vasa Kwatha.

So the present work “Efficacy of Prishnaparni-Bala-Vasa Kwatha in Garbhavastha Janya Shopha” was selected, which acts as Agni Deepana, Hridya, Mutrala, Vedanastapana, Balya, Brihmana and Shothahara.

AIMS & OBJECTIVE OF THE STUDY

- A Conceptual study on Garbhavastha Janya Shopha.
- To evaluate the efficacy of Prishna Parni-Bala-Vasa Kwatha in non-pathological mild to moderate Garbhavastha Janya Shopha.

SOURCE OF DATA

30 patients were selected for study from in-patient department (IPD) & out-patient department (OPD) of SKAMCH & RC, Bangalore 104.

METHOD OF COLLECTION OF THE DATA

- It is a single blind clinical study with pre-test and post-test design; where in 30 patients were selected.
- A case Proforma was prepared considering all the points pertaining to the history taking, physical examination, laboratory investigations.
- The parameters of signs and symptoms were scored as mentioned in the proforma.
- Following statistical methods were employed for the analysis of the data collected, i.e. Descriptive statistics and Paired “t” test.

INCLUSION CRITERIA

- Pregnant women in 21st to 32nd week of Gestation with non-pathological mild to moderate pedal oedema.
- Patients between 18-35 years of age.

EXCLUSION CRITERIA

- Any other type of oedema during pregnancy associated with pre-existing medical illness like Tuberculosis, Epilepsy, Hypertension, Diabetes, Heart disease and severe anemia.
- Grand multiparous.
- Pregnancy associated with any gynecological complications such as Fibroid uterus, ovarian cyst, and cervical carcinoma.
- Pregnancy associated with any Obstetric complications such as Ante-partum hemorrhage, Multiple Gestations, Partial Hydatidiform Mole, Pre-eclamptic Toxemia, Pregnancy Induced Hypertension, Malformations of pelvis, Rh-Incompatibility, Bad Obstetric History.

STUDY DESIGN

30 patients diagnosed as Garbhavastha Janya Shopha were treated with PrushniParni-Bala-Vasa Kwatha orally for 15 days.

INTERVENTION

Drug: Prushna Parni-Bala-Vasa Kwatha orally for 15 days was given to pregnant women between 21st to 32nd weeks of Gestation with non-pathological mild to moderated pedal oedema.

Dose: 16 ml thrice daily orally.

Preparation of medicine: Prishnaparni moola, Bala moola, Vasa patra was taken in equal quantity and made into a course powder. Kwatha was prepared with 8 parts of water and reduced to 4 parts.

Duration of Study: 29 days.

Post Test: On 15th day.

Follow up: On 22nd and 29th day.

ASSESSMENT CRITERIA:

The oedema was assessed on the basis of objective parameters as mild and moderate oedema as,

Mild Oedema:
 - Pitting oedema limited to Fore foot.

Moderate Oedema:
 - Oedema found in the ankle up to medial malleolus and lower 1/3 of tibia.
Hence the mid-calf and mid-thigh was not considered for the present study. The following 6 criteria were taken for assessment, i.e.,

1) Location of Pedal oedema.(Right leg & Left leg)
 Absent = 0
 Fore Foot = 1
 Ankle joint = 2

2) Unilateral and Bilateral Oedema.
 Absent = 0
 Unilateral (Right/left) = 1
 Bilateral = 2

3) Circumference measurement with measuring tapes at -Foot, Ankle joint of both right and left leg.

4) Grading of oedema, was done as follows on Fore Foot, Ankle joint of both right and left leg.
 0 --- Oedema Absent.
 1+ --- slight pitting/ 2mm, disappears rapidly
 2+ --- deep pit/ 4mm, disappears in 10-15secs
 3+ --- deeper pit / 6mm, may last > 1 min
 4+ --- deepest pit/ 8mm, lasts 2-5 min

Indentation was measured with a digital vernier caliper and the time was noted with a stop watch.

5) Time of aggravation - the duration of aggravation of oedema was assessed as
 Absent = 0 18 Hours = 3
 6 Hours=1 24 Hours = 4

6) Pitting / Non-pitting in right and left leg at fore foot and above ankle.

Since Non-pitting oedema was not exhibited in any of the patients, it was not considered for the study.

Absence = 0
Mild Pitting up to 2mm = 1
Moderate Pitting up to 4mm = 2
Severe Pitting up to 6mm = 3

INVESTIGATIONS
- Blood – Hemoglobin, Total Count, Direct Count, Platelet count, serum creatinine,
 serum uric acid.
- Urine – Albumin, Sugar, microscopic examination.
- Ultra-sonography – abdomen and pelvis
- Ultra-sonography – OBG.

Discussions
In this study of 30 patients, the results are analyzed as below.

Since this study is on non-pathological pedal oedema, the site of physiological oedema is confined up to medial malleolus and lower 1/3 of tibia, there is no oedema present in mid-calf and mid-thigh. Also in this study, it was found that the oedema was present on fore foot and ankle joint in all the patients, the oedema was absent in the mid-calf and mid-thigh. Hence the oedema of fore-foot and ankle joint was only considered in this study for better understating and statistical analysis.

Table No. 1. Effect of treatment on Location of Oedema:

<table>
<thead>
<tr>
<th>Variables</th>
<th>BT</th>
<th>Mean</th>
<th>N</th>
<th>Mean diff</th>
<th>SD</th>
<th>SE</th>
<th>t</th>
<th>p</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Leg</td>
<td>AT</td>
<td>0.43</td>
<td>30</td>
<td>1.57</td>
<td>0.77</td>
<td>0.14</td>
<td>11.086</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td>Right Leg</td>
<td>FU1</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
<td>0.0014</td>
<td>S</td>
</tr>
<tr>
<td>Right Leg</td>
<td>FU2</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
<td>0.0014</td>
<td>S</td>
</tr>
<tr>
<td>Left Leg</td>
<td>AT</td>
<td>0.43</td>
<td>30</td>
<td>1.57</td>
<td>0.77</td>
<td>0.14</td>
<td>11.086</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td>Left Leg</td>
<td>FU1</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
<td>0.0014</td>
<td>S</td>
</tr>
<tr>
<td>Left Leg</td>
<td>FU2</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
<td>0.0014</td>
<td>S</td>
</tr>
</tbody>
</table>

Right leg: When the values were analyzed in Right leg the difference was statistically highly significant at the level of t=11.0886 and p= 0.0014 between BT and FU1 & FU2.

Left leg: When the values were analyzed in Left leg the difference was statistically highly significant at the level of t=11.0886 and p= 0.0014 between BT and FU1 &FU2.
<0.0001, between BT and AT, was significant at the level of t=3.5254and p= 0.0014 between BT and FU1 & FU2.

This shows that the treatment given was effective in reducing the oedema in both right and left leg at fore-foot and ankle joint uniformly during the study period.

Pressure exerted by the gravid uterus on the veins is more on the right side due to dexto-rotation of the uterus. So, physiological oedema is present more on right leg during pregnancy.

Though the oedema was reduced significantly, it was uniform in nature and even in the follow up the slight re-appearance of oedema was also uniform and hence no relationship was established for the effect of treatment on the location of oedema.

2. Circumference of Oedema:

<table>
<thead>
<tr>
<th>Circumference</th>
<th>Mean - BT</th>
<th>Mean</th>
<th>Mean Diff</th>
<th>SD</th>
<th>SE</th>
<th>t</th>
<th>p</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fore Foot - Right leg</td>
<td>22.970</td>
<td>AT</td>
<td>22.620</td>
<td>0.350</td>
<td>1.059</td>
<td>8.8039</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>22.823</td>
<td>0.147</td>
<td>1.083</td>
<td>3.9252</td>
<td>0.0005</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>22.823</td>
<td>0.147</td>
<td>1.083</td>
<td>3.9252</td>
<td>0.0005</td>
<td>HS</td>
</tr>
<tr>
<td>Fore Foot - Left leg</td>
<td>22.970</td>
<td>AT</td>
<td>22.620</td>
<td>0.350</td>
<td>1.059</td>
<td>8.8039</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>22.823</td>
<td>0.147</td>
<td>1.083</td>
<td>3.9252</td>
<td>0.0005</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>22.823</td>
<td>0.147</td>
<td>1.083</td>
<td>3.9252</td>
<td>0.0005</td>
<td>HS</td>
</tr>
<tr>
<td>Ankle joint - Right leg</td>
<td>23.310</td>
<td>AT</td>
<td>23.020</td>
<td>0.29</td>
<td>1.093</td>
<td>6.0990</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>23.213</td>
<td>0.09</td>
<td>1.166</td>
<td>2.3519</td>
<td>0.0257</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>23.213</td>
<td>0.09</td>
<td>1.166</td>
<td>2.3519</td>
<td>0.0257</td>
<td>S</td>
</tr>
<tr>
<td>Ankle joint - Left leg</td>
<td>23.310</td>
<td>AT</td>
<td>23.020</td>
<td>0.29</td>
<td>1.093</td>
<td>6.0990</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>23.213</td>
<td>0.09</td>
<td>1.166</td>
<td>2.3519</td>
<td>0.0257</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>23.213</td>
<td>0.09</td>
<td>1.166</td>
<td>2.3519</td>
<td>0.0257</td>
<td>S</td>
</tr>
</tbody>
</table>

Right leg – Fore foot: When the values were analyzed in Fore foot right leg the difference was statistically highly significant at the level of t= 8.8039 and p= <0.0001 between BT and AT, was statistically highly significant at the level of t=3.9252 and p= 0.0005 between BT and FU1 & FU2.

Left leg – Fore foot: When the values were analyzed in Fore foot left leg the difference was statistically highly significant at the level of t= 8.8039 and p= <0.0001 between BT and AT, was statistically highly significant at the level of t=3.9252 and p= 0.0005 between BT and FU1 & FU2.

Right leg – Ankle joint: When the values were analyzed in right leg- ankle joint the difference was statistically highly significant at the level of t=6.0990and p= <0.0001 between BT and AT, was statistically significant at the level of t=2.3519 and p= 0.0257 between BT and FU1 & FU2.

The measurements of circumference showed significant decrease by the treatment because Prishniparni acts as Vatashamaka due to its Madhura rasa, Madhura vipaka and Ushna virya , Bala acts as Vata shamaka as Pichila, Snigdha gunas and Vasa causes Vatagna and contraction of capillaries, hence helps in reducing the hemo-dilution. When the Vatashamana takes place the Shopha reduces in size.

Since no diet restriction was advocated to the Garbhini, further showed a slight increase during follow up, this can be because the cause of oedema i.e. use of Vatakara ahara and Vihara by Garbhini resulting in Dosha prakopa and...
formation of *Pada shopha* during follow up period.

3. **Unilateral and Bilateral oedema**

Table No.3 Effect of treatment on Unilateral and Bilateral oedema

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Mean diff</th>
<th>SD</th>
<th>SE</th>
<th>t</th>
<th>p</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>2.00</td>
<td>AT</td>
<td>0.53</td>
<td>30</td>
<td>1.47</td>
<td>0.90</td>
<td>0.16</td>
<td>8.9303</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>FU1</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>FU2</td>
<td>1.40</td>
<td>30</td>
<td>0.60</td>
<td>0.93</td>
<td>0.17</td>
<td>3.5254</td>
</tr>
</tbody>
</table>

When the values were analyzed the difference was statistically highly significant at the level of \(t = 8.9303 \) and \(p < 0.0001 \) between BT and AT, statistically significant at the level of \(t = 3.5254 \) and \(p = 0.0014 \), between BT and FU1 & FU2.

In this study of 30 patients, *Shopha* was present bilaterally in all the patients, by affecting both the right and left legs simultaneously. Thought the physiological oedema is usually confined to one leg, more on right side due to occupation of the recto-sigmoid in the left posterior quadrant (dextro-rotation), its absence in the left side is not excluded.

This shows that the treatment given was effective in reducing the bilateral oedema, uniformly in both right and left leg in fore-foot and ankle joint during the study period. In the follow up there was slight recurrence of oedema bilaterally.

4. **Grades of oedema:**

Table No.4. Effect of treatment on Grades of Oedema

<table>
<thead>
<tr>
<th>Grades</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean diff</th>
<th>SD</th>
<th>SE</th>
<th>t</th>
<th>p</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fore Foot-Right leg</td>
<td>1.33</td>
<td>AT</td>
<td>0.33</td>
<td>1.00</td>
<td>0.61</td>
<td>0.61</td>
<td>0.11</td>
<td>7.8831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td>Fore Foot-Left leg</td>
<td>1.33</td>
<td>AT</td>
<td>0.33</td>
<td>1.00</td>
<td>0.61</td>
<td>0.61</td>
<td>0.11</td>
<td>7.8831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td>Ankle joint-Right leg</td>
<td>1.33</td>
<td>AT</td>
<td>0.33</td>
<td>1.00</td>
<td>0.61</td>
<td>0.61</td>
<td>0.11</td>
<td>7.8831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td>Ankle joint-Left leg</td>
<td>1.33</td>
<td>AT</td>
<td>0.33</td>
<td>1.00</td>
<td>0.61</td>
<td>0.61</td>
<td>0.11</td>
<td>7.8831</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU1</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FU2</td>
<td>0.97</td>
<td>0.37</td>
<td>0.76</td>
<td>0.76</td>
<td>0.14</td>
<td>3.6117</td>
</tr>
</tbody>
</table>

In this study, Grade 3 and Grade 4 oedema was not found, though the 4 point scale grading was taken for assessment of the grading, the physiological oedema is found only in Grade 1 and Grade 2.

Right leg – Fore foot: When the values were analyzed the difference was statistically highly significant at the level of \(t = 7.8831 \) and \(p = <0.0001 \) between BT and AT, statistically highly significant at the level of \(t = 3.6117 \) and \(p = <0.0011 \), between BT and FU1&FU2.

Right leg – Ankle joint: When the values were analyzed the difference was statistically highly significant at the level of \(t = 7.8831 \) and \(p = <0.0001 \) between BT and AT, statistically highly significant at the level of \(t = 3.6117 \) and \(p = <0.0011 \), between BT and FU1&FU2.

Left leg –Ankle joint: When the values were analyzed the difference was statistically highly significant at the level of \(t = 7.8831 \) and
In this study, it was found that the Shopha was pitting in nature among all the patients.

Pitting oedema is produced due to free fluid in the interstitial space between cells. Non-pitting oedema is produced in pathological conditions such as myxoedema, elephantiasis which is not taken into consideration in the present study. In pregnancy there is physiological retention of free fluid in the subcutaneous tissue, hence momentary pressure produces pitting in all the patients of this study.

Right leg – Fore foot: When the values were analyzed the difference was statistically highly significant at the level of \(t = 7.8831 \) and \(p < 0.0001 \) between BT and AT, statistically highly significant at the level of \(t = 3.6117 \) and \(p < 0.0011 \), between BT and FU1 & FU2.

Left leg – Fore foot: When the values were analyzed the difference was statistically highly significant at the level of \(t = 7.8831 \) and \(p < 0.0001 \) between BT and AT, statistically highly significant at the level of \(t = 3.6117 \) and \(p < 0.0011 \), between BT and FU1 & FU2.

This shows that the treatment given was effective in reducing the pitting oedema at both right and left leg in fore-foot and ankle joint during the study period. The pitting is reduced as the drugs acts as *murtrala*, there will be reduced retention of fluid in the capillaries resulting in *Shopha hara*. In the follow up there was slight recurrence of pitting oedema due to absence of the treatment.
6. Time of Aggravation:

Table No. 6. Effect of treatment on Time of aggravation of Oedema

<table>
<thead>
<tr>
<th>Mean BT</th>
<th>Mean</th>
<th>N</th>
<th>Mean diff</th>
<th>SD</th>
<th>SE</th>
<th>t</th>
<th>p</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.70</td>
<td>AT</td>
<td>30</td>
<td>1.33</td>
<td>0.72</td>
<td>0.13</td>
<td>8.6509</td>
<td><0.0001</td>
<td>HS</td>
</tr>
<tr>
<td>1.70</td>
<td>FU1</td>
<td>30</td>
<td>0.53</td>
<td>0.87</td>
<td>0.16</td>
<td>0.0041</td>
<td>0.0041</td>
<td>HS</td>
</tr>
<tr>
<td>1.70</td>
<td>FU2</td>
<td>30</td>
<td>0.53</td>
<td>0.87</td>
<td>0.16</td>
<td>0.0041</td>
<td>0.0041</td>
<td>HS</td>
</tr>
</tbody>
</table>

The aggravation of oedema is due to accumulation of fluids in the extracellular space, during activity in the day time and pressure exerted on veins by gravid uterus, in turn increased by the effect of the gravity, which characteristically reduces by going to bed.

When the values were analyzed the difference was statistically highly significant at the level of \(t = 8.6509 \) and \(p = <0.0001 \), between BT and AT, was statistically significant at the level of \(t = 0.0041 \) and \(p = 0.0041 \), between BT and FU1 & FU2.

This shows that the treatment given was effective in reducing the duration of oedema during the study period. Due to Vatahara property of the treatment, the duration of fluid was delayed and also results in reduction in the amount of fluid retention. In the follow up there was slight recurrence of oedema, due to absence of Doshagnata and increase in fluid retention.

CONCLUSION

In this present study of 30 patients who were diagnosed as non-pathological mild to moderate Garbhavastha Janya Shopha in Pada at 21st to 32nd week of Gestation between the age group of 18-35 years were selected and registered. All selected patients were given Prishnaparni-Bala-Vasa Kwatha, 16 ml thrice daily for the duration of 15 days.

The results obtained were as follows:

- Statistically significant effect of the drug was observed. Oedema was significantly reduced till the 15th day of treatment and then during the follow up period i.e. on day 22nd and 29th day mild recurrence of oedema was observed.

So it can be concluded that Prishnaparni-Bala-Vasa Kwatha is effective in treating non-pathological mild to moderate Garbhavastha Janya Shopha in Pada.

In this study the treatment showed no adverse effect on the Mother and the fetus.

ACKNOWLEDGMENT

The authors are deeply grateful to Dr. Sunita Siddesh, Reader & H.O.D, Dept of Prasooti Tantra & Stree Roga, for the inspiration She provided and her blessings. The author is also highly thankful to Dr M Ramesh Professor, Dept of Prasooti Tantra & Stree Roga, Dr. N Amjaneya Murthy Dean of SKAMCH-RC, Dr. Kiran M Goud Princip of SKAMCH-RC for their valuable support.

REFERENCES

4. Vagbhatta Acharya, Rasa Ratna Samuccaya, Trans Dr. Tripathi Indra Deva; Edition 2000; Chaukamba Sanskrit Sanshthan, Delhi; 418-PP.
7. Dwivedi Vasudevmulashankar, Parada vijnaneeyam, 2nd Edition; Chaukhambha Sanskrit sansth, Varanasi, 1997; 323-PP.
9. Lansing M Prescott, John P Harley & Donald A Klein, Microbiology, 5th edition

10. Kathleen Park Talaro & Barry Chess, Foundations in Microbiology, 8th edition

Graph 1:

![Graph 1 Image]

Graph 2:

![Graph 2 Image]

Graph 3:

![Graph 3 Image]
Graph 4:

Graph 5:

Graph 6:

Time of Aggravation

Available online at: http://ayushdhara.in